Rakendusstatistika uurimisrühma juht on professor Krista Fischer. Uurimisrühm tegeleb matemaatilise statistika rakendustega erinevates eluvaldkondades ning neis valdkondades tekkinud probleemide poolt motiveeritud teoreetiliste küsimustega. Uurimisrühma tegemistest andis ülevaate nooremteadur Anastassia Kolde.
Millega Sina tegeled?
Olen Krista Fischeri doktorant ja ametlikult on minu doktoritöö teemaks „Elukestuse mudelite rakendamine oomikandmetele“. Siin on koos kaks mõistet ehk siis elukestusmudelid ja oomikandmed. Elukestuse mudelid võimaldavad võtta arvesse teadmisi kuni mingi kindla ajahetkeni. Kõige lihtsam on seda näidata suremusega. Inimesed on endale sobival ajahetkel liitunud Geenivaramuga ja meie tahame teada, millised faktorid mõjutavad suremust. Loetakse kokku Geenivaramuga liitunud inimeste seast need, kes on ära surnud. Ootuspärane on, et väga paljud neist elavad siiani. Teame, et näiteks tänase ajahetkega on meil väga palju inimesi elus, aga meid huvitab suremus. Siin tulevadki mängu elukestusmudelid, kus saame arvesse võtta juba siiani olemasolevat infot.
Teine pool on aga oomikandmed. Tänapäeval on meil võimalik mõõta inimestelt väga palju erinevaid andmeid: genotüüp, metülatsioon, proteoomika, ekspressiooniandmed jpm. Minu ülesanne ja huvi ongi teha kindlaks, kas me saame neile koondatult oomikandmetele tuginedes teha teadlikumaid otsuseid seisundite suhtes.
Lisaks Geenivaramule olen varasemalt uurinud aga ka näiteks koroona ajal erinevaid terviseandmeid. Ka siis rakendasin antud uuringutes elukestusmudeleid.
Millega rakendusstatistika töörühm veel tegeleb?
Meie põhiliseks huviks on erinevad terviseandmed ja biostatistika valdkond. Selle lõppsiht on teha teadlikumaid otsuseid, et me saaksime ideaalis jõuda põhjuslike tulemusteni. Näiteks kaua terve püsimise nimel antaks spetsiifilised sammud, kuidas seda teha. Või personaalmeditsiin, et arst saaks anda geeniandmete põhjal patsiendile täpsed ravimikogused, mida ta tarbima peaks ja mis näiteks tema genotüübile üldse ei sobigi. Kuna me oleme ikkagi statistikud ja lemmikhaigust meil ei ole, siis olemegi töörühmana seotud väga mitmete erinevate projektidega, kus tekivad terviseandmed ja vajadus andmeid analüüsida (järeldusi teha).
Lisaks tegeletakse uurimisrühmas veel mitmemõõtmelise statistika, tõenäosuslike mudelitega finants- ja kindlustusmatemaatikas, rakendustega sotsiaalteadustes ja demograafias ning mitmesuguste valikuuringutega.
Mitmemõõtmelise statistika valdkonnas on uurimistöö suunatud klassikalise normaaljaotusega üldkogumi kirjeldamiselt üldisemale olukorrale, kus ühelt poolt on vaatluse all parameetrilise statistika mudelid, nende parameetrite hindamise ja hüpoteeside kontrolli ülesanded elliptiliste jaotuste ja ebasümmeetriliste elliptiliste jaotuste korral. Uurimistöö oluliseks osaks on simulatsioonimeetodite rakendamine teoreetiliste tulemuste empiiriliseks kirjeldamiseks.
Finants- ja kindlustusmatemaatika mudelid on reeglina välja töötatud matemaatilise statistika meetodite baasil spetsiifilise ülesandepüstituse jaoks. Finants- ja kindlustusmatemaatika uurimisrühmas uuritakse nii tõenäosuslike mudelite teoreetilisi kui ka rakenduslikke aspekte. Näiteks käsitletakse jaotusi, mis sobivad kirjeldama kahjude suurust, preemiaarvutus laiemalt (sh nii kahjude arvu kui üksikkahjude arvu jaotuse hindamine) ning reservide mudelid.
Miks sina statistika valisid? Miks spetsialiseerusid rakendusstatistikas?
„Mulle tundub see tohutult põnev, loomulikult. Kui endal põnev ei ole, siis ei tasugi teha.“ Mulle tundub rakendusstatistika nii laiapõhjaline. Hetkel olen tohutus vaimustuses justnimelt biostatistikast ja koostööst Geenivaramu ning kõikvõimalike arstidega. Samas ma tean, et kui soovin kunagi karjääripööret teha, siis see on väga lihtsasti tehtav, sest saan oma statistikateadmisi rakendada ükskõik millisel teisel elualal, vajalikud lisateadmised juurde omandades.
Lõpetuseks anna üks näpunäide statistikahuvilisele
Nautige statistikat ja statistika õppimist! See on tõeliselt ilus ala ja lõpuks nii ilusad ja toredad projektid. Soovitusena lisan veel, et mõelge välja, mis teid tõesti huvitab – linnud, lehmad, terviseandmed, kindlustus või hoopis midagi muud. Siis te saate oma huvi statistikaga ühendada just endale meelepärases valdkonnas. Ja siis ma luban, et saab olema põnev!
Vaata veel:
Naised teaduses: Ene-Margit Tiit
Biostatistika
Prof. Krista Fischeri juhitavas töörühmas on üheks uurimisvaldkonnaks mudelid geneetilises epidemioloogias. Selles valdkonnas tehakse koostööd TÜ genoomika instituudiga, ning uurimisteemad on peamiselt seotud terviseriskide prognoosimisega TÜ Eesti geenivaramu geenidoonorite andmebaasi põhjal, mis omakorda on oluliseks sisendiks personaalmeditsiini rakendamisele Eestis. Statistilised probleemid on seotud polügeensete riskiskooride väljatöötamisega ja absoluutriskide prognoosimisega, samuti põhjuslike mõjude hindamisega.
(prof. Krista Fischer, kaasprofessor Märt Möls, teadur/järeldoktorant Oleksandr Chepizko, doktorandid Anastassia Kolde, Merli Mändul, Tuuli Jürgenson)
Mitmemõõtmeline statistika
Mitmemõõtmelise statistika valdkonnas on uurimistöö on suunatud klassikalise normaaljaotusega üldkogumi kirjeldamiselt üldisemale olukorrale, kus ühelt poolt on vaatluse all parameetrilise statistika mudelid, nende parameetrite hindamise ja hüpoteeside kontrolli ülesanded elliptiliste jaotuste ja ebasümmeetriliste elliptiliste jaotuste korral. Teisalt arendatakse andmeanalüüsis vajalike keerukate statistikute jaotuste lähendamist asümptootiliste jaotuste leidmise ja reaksarenduste teel. Üheks suunaks on mitmemõõtmeliste jaotuste baasil koopulate konstrueerimine ja nende rakendamine andmeanalüüsi ülesannetes. Uurimistöö oluliseks osaks on simulatsioonimeetodite rakendamine teoreetiliste tulemuste empiiriliseks kirjeldamiseks.
Tõenäosuslikud mudelid finants- ja kindlustusmatemaatikas
Finants- ja kindlustusmatemaatika mudelid on reeglina välja töötatud matemaatilise statistika meetodite baasil spetsiifilise ülesandepüstituse jaoks. Finants- ja kindlustusmatemaatika uurimisrühmas uuritakse nii tõenäosuslike mudelite teoreetilisi kui ka rakenduslikke aspekte. Paljud kindlustusmatemaatika uurimisküsimused sisaldavad jaotustega lähendamise ülesannet, sh erilise tähelepanu all raske sabaga jaotused (näiteks asümmeetriline normaaljaotus ja asümmeetriline t-jaotus), mis sobivad kirjeldama kahjude suurust. Huvi pakuvad ka muud kindlustusmatemaatika küsimused, näiteks preemiaarvutus laiemalt (sh nii kahjude arvu kui üksikkahjude arvu jaotuse hindamine) ning reservide mudelid.
Valikuuringud
Statistika rakendused sotsiaalteadustes ja demograafias
Uurimisrühma liikmed:
Doktorandid: