1. Dirichlet teoreem aritmeetilistest jadadest, juhendaja Lauri Tart
2.Kuupvastavusseadus, juhendaja Lauri Tart
3. Järjestused Reesi maatrikspoolrühmadel, juhendaja Lauri Tart
4. Greeni-Tao teoreem, juhendaja Lauri Tart
5. HÕIVATUD: Moran tüüpi evolutsioonimudelid, juhendaja Jüri Lember
6. Lõputöö segujaotustest ja parameetrite hindamisest, juhendaja Jüri Lember
Ühe olulise alamklassi kõigi Banachi ruumide klassis moodustavad Banachi võred. Aastal 2018 tõid matemaatikud Aviles, Rodriguez ja Tradacete sisse vaba Banachi võre mõiste ehk Banachi võred, mis on tekitatud kindlal viisil juba olemasolevast Banachi ruumist (vt https://zbmath.org/?q=an%3A1400.46015). Pärast selle artikli ilmumist on järjest enam püütud mõista, milliseid (geomeetrilisi) omadusi vabad Banachi võred omavad (vt https://zbmath.org/?q=an%3A1458.46009). Hea sissejuhatuse teemasse saab siis, kui järelkuulata esinemist funktsionaalanalüüsi seminaris:https://onedrive.live.com/?authkey=%21AMldNRnNBoCShwc&cid=F0220D77D53D25...
Lõputöö peamiseks eesmärgiks on anda ülevaade vaba Banachi võre konstrueerimisest. Töö on valdavalt referatiivne, kuid kuna sel teemal on mitu lahtist küsimust, siis soovi korral saab ka proovida teha uurimistööd ja hea õnne korral saada uusi teadustulemusi. Seega teema sobib bakalaureusetööks, aga on kergesti jätkatav ka magistritööks. Mitme huvilise korral on Banachi ruumide geomeetriast veel sarnaseid teemasid välja pakkuda.
Kontakt: Johann Langemets johann.langemets@ut.ee
uurib diferentsiaalgeomeetria struktuure ja nende rakendusi teoreetilises füüsikas. Diferentsiaalgeomeetria uurimise põhiobjektiks on pind ja selle üldistused muutkond, kihtkond. Kahemõõtmilise pinna näited on sfäär, toor, katenoid, pseudosfäär, ühekatteline hüperboloid ja teised. Pinna geomeetrilised karakteristikud on esimene fundamentaalvorm (pinna meetrika), teine fundamentaalvorm, Gaussi ja keskmine kõverus, Gaussi võrrandid, Petersen-Codazzi võrrandid. Pakutavad teemad on järgmised:
Kui hulgateoorias loetakse hulgad sarnasteks (ekvivalentseteks), kui nende vahel on olemas bijektsioon, siis topoloogiaga varustatud hulkade ehk topoloogiliste ruumide korral nõutakse hulkade sarnaseks (homöomorfseteks) lugemisel sellelt bijektsioonilt veel lisaks, et nii bijektsioon kui ka tema pöördkujutus oleksid pidevad.
Käesoleva bakalaureusetöö eesmärgiks on homomorfismi defineerimiseks vajalike topoloogia mõistetega tutvumine ning homöomorfismi kasutamine kolmemõõtmeliste objektide võrdlemisel. Näiteks on klassikaline topoloogias tuntud homomorfismi näide see, et topoloogi jaoks ei ole vahet sõõrikul/tooril ja kohvitassil. Töö käigus tulekski esmalt sellest näitest arusaamisest alustada ning selle abil uurida teisi üllatavaid kolmemõõtmeliste kehade paare, mis osutuvad homöomorfseteks (näiteks kringel ja kahe lõõriga korsten).
Töö kirjutamisel on soovitatav kuulata kursust „Üldine topoloogia“, kuid on võimalik vajalik teoreetiline materjal endale ka õpikute ja juhendajate soovituste põhjal iseseisvalt selgeks teha.
Positiivset täisarvu nimetatakse τ-arvuks, kui arvu positiivsete jagajate arv τ() jagab arvu . Näiteks on τ-arvuks arv 8, sest arvu 8 positiivsed jagajad on 1, 2, 4 ja 8 (kokku 4 erinevat jagajat) ning on lihtne näha, et arv 4= τ() jagab arvu 8.
Positiivset täisarvu nimetatakse τ-arvuks täisarvuliste kordajatega polünoomi Q(x) suhtes, kui arvu positiivsete jagajate arv τ() jagab polünoomi Q(x) väärtust kohal n, s.t., kui arv τ() jagab arvu Q(). Näiteks on arv 3 τ-arvuks polünoomi Q(x)=x2 -1 suhtes, sest 2= τ() jagab arvu 8=Q(3).
Kui τ-arvude kohta on alates aastast 1990 ilmunud mitmeid teadusartikleid ning neid võib matemaatikute seas juba üsna „tuntuteks“ pidada, siis τ-arvud polünoomide suhtes defineeriti alles aastal 2002 ning nende kohta ei ole senini eriti palju artikleid ilmunud (juhendajad oskavad lisaks 2002. aastal ilmunud artiklile välja tuua veel vaid ühe 2014. aastal Tallinna Ülikoolis kaitstud magistritöö, kus seda teemat on definitsiooni tasemel käsitletud).
Käesoleva bakalaureusetöö eesmärgiks on esmalt veidi tutvuda τ-arvu mõistega ning seejärel tegeleda τ-arvudega polünoomide suhtes, pannes kirja nende põhiomadused ning tuletades uusi omadusi. Töö kirjutamine eeldab huvi olemasolu arvuteooria ja polünoomide vastu. Et valdkond on seni üsna vähe arenenud, siis on siin palju võimalusi edaspidiseks uurimistööks magistriõppes või isegi doktoriõppes.
Mittekorrektsete ülesannete uurimisrühm, teemad 10.-12., juhendajad Urve Kangro, Uno Hämarik, Toomas Raus
10. Esimest liiki integraalvõrrandi numbriline lahendamine kollokatsioonimeetodiga, juhendajad Uno Hämarik ja/või Urve Kangro
11. Landweberi iteratsioonimeetodi kiirendamine, juhendajad Uno Hämarik ja/või Toomas Raus
12. Regulariseerimisparameetri heuristilisest valikust Tihhonovi meetodis, juhendajad Uno Hämarik ja/või Toomas Raus
13. Kvaternioonmuutuja funktsioonid, juhendaja Urve Kangro
14. Murrulised diferentsiaalvõrrandid, juhendaja Urve Kangro
15. Dünaamilised süsteemid, juhendaja Urve Kangro
16. Subdivision, juhendaja Evely Kirsiaed
17. Ratsionaalsplainide kasutamine hariliku diferentsiaalvõrrandi rajaülesande lahendamisel, juhendaja Evely Kirsiaed
18. Matemaatilise analüüsi uurimisrühm, võimalikud juhendajad Kati Ain, Rainis Haller, Urve Kangro, Johann Langemets, Aleksei Lissitsin, Märt Põldvere, Natalia Saealle, Indrek Zolk.
19. HÕIVATUD: Maatriksid üle kvantaalide, juhendaja Valdis Laan
20. Radikaalid võredes, juhendaja Valdis Laan
Et teooria oleks füüsikaline, peab potentsiaalne energia olema alt tõkestatud. Teisisõnu, alt tõkestatud peab olema skalaarne potentsiaal, mis on neljandat järku polünoom väljadest. Tihti on potentsiaal ka sümmeetriline mingi pideva rühma, näiteks kvantkromodünaamika kalibratsioonirühma SU(3) suhtes. Võimalik tööülesanne on potentsiaali alt tõkestatuse tingimuste otsimine SU(N) rühmade erinevate esituste jaoks, sealhulgas meetodite otsimine nende orbiidiruumi arvutamiseks. Sellega seotud probleem on potentsiaalide miinimumi ja sellele miinimumi sümmeetriarühma leidmine. Kontakt: Kristjan.Kannike@cern.ch
1. Segmenteerimine varjatud Markovi mudelitega: erinevate R-pakettide võrdlus ja võimalused, juhendaja Kristi Kuljus
2. Statistiline mudeli valik: erinevad informatsioonikriteeriumid ja suurimate vahemike meetod, juhendaja Kristi Kuljus
3. HÕIVATUD: Moran tüüpi evolutsioonimudelid, juhendaja Jüri Lember
4. Lõputöö segujaotustest ja parameetrite hindamisest, juhendaja Jüri Lember
5. Eesti Maaülikooli veterinaarmeditsiini ja loomakasvatuse instituut pakkus 14 teemat. Koordinaator Tanel Kaart. Märksõnad: kalageneetika/bioinformaatika, loomageneetika/bioinformaatika, populatsioonigeneetika ja aretus, loomakasvatus ja veterinaarmeditsiin.
HÕIVATUD: 5.9. Farmijuhatajate suhtumine ja isikuomadused ning seos vasikate suremusega suurtes piimatootmisfarmides.
HÕIVATUD: 5.12. Antibiootikumiravi analüüs
Consequences of COVID are real, but poorly characterized. The goal of this project is to improve the understanding of COVID-19 effects, by studying medical records of Estonian COVID patients to identify health problems that become more frequent after the COVID diagnosis. In such research, the emphasis is on finding and applying the right epidemiological approach for getting aolid results.
Needed from the student:
* good understanding of statistics and interest in epidemiology
More information: Raivo Kolde raivo.kolde@ut.ee
Focusing the whole medical system for a fight with COVID certainly affected the treatment of patients with other diseases. We would like to assess how much exactly did the treatment of patients change in the first wave of COVID and can we detect the longer-term consequences of those changes. For this project, we can leverage a database of medical records of 50000 Estonians who have not been diagnosed with COVID.
Needed from the student:
* good understanding of statistics and interest in epidemiology
More information: Raivo Kolde raivo.kolde@ut.ee
Studies on COVID-19 severity risk factors have identified several factors that predict the progression of the disease, both genetic and clinical risk factors have been found. The idea, in this case, is to combine the predictions of both types of factors to see, how much does combining the data sources improves the overall predictive ability.
Needed from the student:
* good understanding of statistics and interest in epidemiology and genetics
More information: Raivo Kolde raivo.kolde@ut.ee
Drug adherence is an important determinant of long-term outcomes in chronic diseases. There exist several tools to monitor adherence patterns on real-world drug prescription datasets, however, none of them are ported to the OMOP common data model. The goal of the project is to create an R package that can analyze adherence patterns on the OMOP data model and will provide tools to run multinational studies on drug adherence.
Needed from the student:
* good programming skills (experience in R and SQL would be good, but not required)
* interest in data visualization
More information: Raivo Kolde raivo.kolde@ut.ee
Following prescribed treatments accurately is an important trait for managing chronic diseases, but varies widely across people. Here we want to assess the inclination to follow treatments by combining adherence information from multiple drugs. The goal is to understand if such inclination is a persistent personality trait or something that changes considerably over time.
Needed from the student:
* good understanding of statistics
* willingness to invest time in understanding the clinical background
More information: Raivo Kolde raivo.kolde@ut.ee
If inclination to follow treatments is a personality trait it should have some genetic underpinnings. The combination of the Estonian electronic prescription database and genetic information from the Estonian Genome Bank allows the study of genetic determinants of drug adherence. The goal of the thesis is to run a genome-wide association study on the drug adherence phenotype.
Needed from the student
* general interest in clinical topics and genetics
More information: Raivo Kolde raivo.kolde@ut.ee
Medical datasets often have poor quality and contain missing information. Some of it should be relatively easy to impute as the number of possible values is small. The goal of the project is to explore ways to impute missing information in datasets and apply these to real medical datasets.
Needed from the student:
* good understanding of statistics
More information: Raivo Kolde raivo.kolde@ut.ee
Koroonaviiruse vastu vaktsineerimise juures on hetkel üks põletav küsimus: millest sõltub see, et vaktsineeritu siiski nakatub?
Antud töö eesmärgiks ongi seda uurida, kasutades Eesti andmeid. Töö teeb keerukaks fakt, et erinevatel aegadel on erinevas vanuses inimesi vaktsineeritud erinevate vaktsiinidega. Võimalikke lähenemisi on siin mitu – lihtsaim on hinnata mudel vaid ühe ajaperioodi nakatumistele (nt september 2021), kasutades argumenttunnustena vaktsineerimise andmeid enne seda perioodi. Peaeesmärk ongi esmalt kirja panna tõenäosuslikud mudelid, mida hinnata saame ja eeldused, mille kehtimisel on järeldused valiidsed, ning seejärel andmeanalüüs ka läbi viia. Kui tudengil on rohkem aega ja huvi, on võimalik katsetada ka elukestusanalüüsi meetodeid.
Rinnavähk on üks sagedamini esinevaid vähkkasvajaid naistel ja ka üsna sage surmapõhjus. Samas on tegu haigusele, mida on varajase avastamise korral võimalik edukalt ravida. Üheks võimaluseks varajast avastamist veelgi tõhustada (lisaks riiklikule sõeluuringu-programmile) on hinnata geneetilist eelsoodumust rinnavähi tekkeks ja kutsuda kõrge geneetilise riskiga naised sõeluuringule ettenähtust nooremas ja ka vanemas vanuses. Esimene pilootprojekt sellise strateegia hindamiseks on juba läbi viidud, kuid nüüd on vaja analüüsida suuremat andmebaasi (enam kui 100000 naist geenivaramus) ja täpsustada saadud hinnanguid. Bakalaureusetöö ülesandeks ongi hinnata sobivad elukestusanalüüsi mudelid ja hinnata nende põhjal haiguseriski erinevates riskiskoori kategooriates. Teema valinud tudeng saab tutvuda geenivaramu andmetega ja sellega, kuidas geenivaramus tehtud teadustöö tulemusi saaks tervishoiusüsteemis rakendada.
Geneetikas, sekveneerimisandmete analüüsil, on sageli probleemiks vaatlusandmete sõltuvus. Sekveneerimisandmete puhul on vaatluste sõltuvust tekitavat mehhanismi võimalik suhteliselt hästi matemaatiliselt kirjeldada. Kuidas aga neid sõltuvaid vaatluseid edaspidi graafikute joonistamisel/statistiliste testide tegemisel kasutada on juba märksa keerulisem probleem. Isegi lihtsa histogrmmi joonistamisel eeldatakse vaatlusandmete sõltumatust ja sõltuvate vaatluste pealt joonistatud histogrammi on kerge ekslikult tõlgendada. Samuti eeldavad statistilised testid (näiteks jaotuse sobivuse testimine) vaatlusandmete sõltumatust. Töö eesmärgiks on uurida võimalusi, kuidas elusorganismide genoomide lugemisel ehk sekveneerimisel tekkida võivaid sõltuvusi edaspidises analüüsis korrektselt arvesse võtta.
Lisaks ettevõtte tasemel statistikale on vaja teha statistikat ka ettevõtte kohalike üksuste kohta. Kohalik üksus on ettevõtte tegutsemiskoht, kus asuvad ettevõtte töökohad (näiteks kauplus, tankla jne). Kohalike üksuste moodustamise aluseks on töötamise register (TÖR), kuhu ettevõtted registreerivad töötaja töökoha aadressi. Kohaliku üksuse jaoks on vaja tuletada järgmised statistilised näitajad – keskmine töötajate arv, tööjõukulud ja töötatud tunnid. Kohaliku üksuste näitajate tuletamiseks on vaja kasutada töötamise registri, maksudeklaratsioonide ning majandusaasta aruannete andmeid. Töötundide kohta andmeid registrites puuduvad. Vaja on prognoosida töötunnid, kasutades teadaolevaid ettevõtte töötunde ja registritest saadavaid taustaandmeid kohaliku üksuse töötajate kohta.
Vajalik on mahukate registriandmete linkimine ja analüüs. Registriandmeid saab kasutada Delta majas Statistikaameti kontoris.
KONTAKTISIK STATISTIKAMETIS: (Kaja Sõstra, kaja.sostra@stat.ee, Merike Põldsaar merike.poldsaar@stat.ee)
1. HÕIVATUD: Moran tüüpi evolutsioonimudelid, juhendaja Jüri Lember
2. Lõputöö segujaotustest ja parameetrite hindamisest, juhendaja Jüri Lember
3. Eesti Maaülikooli veterinaarmeditsiini ja loomakasvatuse instituut pakkus 14 teemat. Koordinaator Tanel Kaart. Märksõnad: kalageneetika/bioinformaatika, loomageneetika/bioinformaatika, populatsioonigeneetika ja aretus, loomakasvatus ja veterinaarmeditsiin
Ühe olulise alamklassi kõigi Banachi ruumide klassis moodustavad Banachi võred. Aastal 2018 tõid matemaatikud Aviles, Rodriguez ja Tradacete sisse vaba Banachi võre mõiste ehk Banachi võred, mis on tekitatud kindlal viisil juba olemasolevast Banachi ruumist (vt https://zbmath.org/?q=an%3A1400.46015). Pärast selle artikli ilmumist on järjest enam püütud mõista, milliseid (geomeetrilisi) omadusi vabad Banachi võred omavad (vt https://zbmath.org/?q=an%3A1458.46009). Hea sissejuhatuse teemasse saab siis, kui järelkuulata esinemist funktsionaalanalüüsi seminaris:https://onedrive.live.com/?authkey=%21AMldNRnNBoCShwc&cid=F0220D77D53D25... Lõputöö peamiseks eesmärgiks on anda ülevaade vaba Banachi võre konstrueerimisest. Töö on valdavalt referatiivne, kuid kuna sel teemal on mitu lahtist küsimust, siis soovi korral saab ka proovida teha uurimistööd ja hea õnne korral saada uusi teadustulemusi. Seega teema sobib bakalaureusetööks, aga on kergesti jätkatav ka magistritööks. Mitme huvilise korral on Banachi ruumide geomeetriast veel sarnaseid teemasid välja pakkuda.Kontakt: Johann Langemets johann.langemets@ut.ee
1. Distantsõpe matemaatikas (õpilaste ja õpetajate kogemused, erinevad teemad), juhendajad Kerli Orav-Puurand, Tiina Kraav, Sirje Pihlap, Hannes Jukk
2. Probleemülesannete lahendamine III kooliastmes, juhendajad Tiina Kraav, Kerli Orav-Puurand
3. Probleemülesannete lahendamine gümnaasiumis, juhendajad Tiina Kraav, Kerli Orav-Puurand
4. Õppematerjali koostamine, juhendaja Sirje Pihlap
5. Info- ja kommunikatsioonitehnoloogia kasutamine matemaatikaõppes (erinevad teemad), juhendaja Sirje Pihlap
6. Riigieksami kursusele kontrolltestide loomine, juhendajad Tiina Kraav, Kerli Orav-Puurand
7. Automaatkontrollitavate ülesannete koostamine mingi õppeastme konkreetse teema kohta (näiteks algebraliste avaldiste lihtsustamine, funktsiooni uurimine, võrrandite lahendamine jne) ning koostatud ülesannete testimine mingi grupi õpilaste peal. Eesmärgiks on tekitada õpetajatele vabalt kättesaadav Moodle’i STACK ülesannete kogu, mis kataks kõik 3. kooliastme ja gümnaasiumi teemad, vähendaks õpetajate töökoormust ning oleks abiks õpilastele iseseisvalt eksamiks õppimisel. Juhendaja Evely Kirsiaed
8. Programmeerimise MOOCidega seotud lõputööd, juhendad Piret Luik, Marina Lepp, Reelika Suviste, Merilin Säde, Lidia Feklistova, Heidi Meier, …
9. Sissejuhatus andmebaaside kursusele praktikumide juhendmaterjalide koostamine, juhendaja Piret Luik
10. Andmebaaside kursuse projektide analüüs, juhendaja Piret Luik
11. Informaatika õpetamine I-II kooliastmes – teemad, vahendid, juhendaja Piret Luik
12. Digiohutuse õpetamine koolis, juhendaja Piret Luik
13. Sissejuhatus andmebaaside kursusele murelahendajate koostamine, juhendajad Piret Luik ja Marina Lepp
14. Distantsõpe (kasutatud lahendused, võimalused, hinnangud toimetulekule jms), juhendajad Piret Luik ja Marina Lepp
15. Lisamaterjalide (nt enesekontrolli küsimuste) koostamine kursuse “Objektorienteeritud programmeerimine” jaoks, juhendaja Marina Lepp
16. Lisamaterjalide (nt ülesannete, murelahendajate) koostamine kursuse “Introduction to Programming” jaoks, juhendajad Marina Lepp ja Reelika Suviste
17. Informaatika õpetamine erinevates kooliastmetes, juhendaja Reelika Suviste
18. Hoiakud matemaatikast ning nende seosed programmeerimise algkursusel osalemisega, juhendaja Reelika Suviste
19. Ettevõtlusõppe rakendamise võimalused informaatikaõppes – III ja IV kooliaste, juhendaja Reelika Suviste
20. Ülikooli kursuse “Programmeerimine” kontrolltööde analüüs, juhendaja Tauno Palts
21. Gümnaasiumi programmeerimiseksami koostamine ja katsetamine, juhendaja Tauno Palts
22. Gümnaasiumi uurimistöö vormistusjuhendi õppematerjalide koostamine, juhendaja Tauno Palts
23. Õppevideote tegemise õpetused: planeerimine, video tegemine, monteerimine, avaldamine, juhendaja Tauno Palts
24. Osalejate edenemine õpetajate kursusel “Programmeerimisest maalähedaselt”, juhendaja Tauno Palts
25. Veebirakenduse loomine informaatikaviktoriini Kobras jaoks, juhendaja Lidia Feklistova
26. Informaatikaviktoriini Kobras osalejate analüüs, juhendaja Lidia Feklistova
27. Multimeedia kasutamine koolitundides, juhendaja Lidia Feklistova
28. Raamistiku Vue.js õppematerjalid, juhendaja Lidia Feklistova
29. Thonny logid, juhendaja Heidi Meier
30. Graafikalaua (ja teiste vahendite) kasutamine õppetöös, juhendaja Marili Rõõm
31. Programmeerimise MOOCidel osalejate võrdlus lähtudes nende eesmärgist kursusel, juhendaja Marili Rõõm
32. Programmeerimise kursuse jaoks materjalide koostamine, juhendaja Reimo Palm
33. Programmeerimise nädalatestide vastuste analüüs, juhendaja Reimo Palm
34. Programmide automaattestide kasutusuuring, juhendaja Reimo Palm
35. Loogikavalemite teisendamisredaktor, juhendaja Reimo Palm
36. Tekstülesannete lahendamise keskkond. Prototüüp. Juhendaja Rein Prank
37. Arvutialgebra kasutamise viiside väljatöötamine hulkliikmete tegurdamise ülesannete jaoks põhikoolis, juhendaja Rein Prank