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ABSTRACT. In this paper, the maximum spacing method is considered for multivariate obser-
vations. Nearest neighbour balls are used as a multidimensional analogue to univariate spacings.
A class of information-type measures is used to generalize the concept of maximum spacing esti-
mators. Weak and strong consistency of these generalized maximum spacing estimators are proved
both when the assigned model class is correct and when the true density is not a member of the
model class. An example of the generalized maximum spacing method in model validation context
is discussed.
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1. Generalized maximum spacing estimate

1.1. Introduction

For independent and identically distributed univariate observations, a new estimation method,
the maximum spacing (MSP) method, was defined in Ranneby (1984) and independently by
Cheng & Amin (1983). In Ranneby et al. (2005), the MSP method was extended to multivariate
observations for the Kullback-Leibler information measure using both nearest neighbour balls
and Dirichlet cells. The approach with Dirichlet cells was previously applied in Ranneby (1996)
and studied in more detail by Jimenez & Yukich (2002). In this paper, the multivariate maxi-
mum spacing estimation method based on nearest neighbour balls is considered for a broader
class of information-type measures. We prove both weak and strong consistency of these gen-
eralized maximum spacing estimators under general conditions. In the univariate case, such
generalized MSP estimators based on different metrics were studied in Ranneby & Ekström
(1997), Ekström (2001) and Ghosh & Jammalamadaka (2001). Strong consistency of the MSP
estimators in the case of Kullback-Leibler information and for univariate observations was
proved in Ekström (1997) and Shao & Hahn (1999). Because estimators based on different
information measures have different properties (regarding e.g. robustness, bias and variance),
they behave differently in various situations. Which estimator is more suitable in any particular
situation depends on these properties. For example, even if many suitable choices of informa-
tion measure lead to limiting normal distributions of maximum spacing functions, the speed of
convergence can be quite different (Penev & Ruderman, 2011). As mentioned and exemplified
already in Ranneby (1984), an advantage of the maximum spacing method compared with the
maximum likelihood method is the possibility of checking the validity of the assigned model
class at the same time with solving the estimation problem. In this article, we will demonstrate
that combining information from spacing functions under different divergence measures can
provide further insight in the model validation context.
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In Section 2 we will prove weak consistency and in Section 3 strong consistency of the gen-
eralized MSP estimators. Some issues concerning a suitable choice of information measure in
different situations in the multivariate case will be discussed and illustrated in Section 4.

1.2. Notation and definitions

Let �1; : : : ; �n be a sequence of independent and identically distributed d -dimensional random
vectors with distribution P0 that is absolutely continuous with respect to Lebesgue measure.
Let the corresponding density function be g.x/. Define the nearest neighbour distance to the
random variable �i as

Rn.i/ D min
j¤i
j�i � �j j ; i D 1; : : : ; n :

Let B.x; r/ D ¹y W jx � yj � rº denote the ball of radius r and centre x. Let NNi denote
the nearest neighbour of �i , and let Bn.�i / denote its nearest neighbour ball, that is, this is
a ball with centre �i and radius Rn.i/. Suppose, we assign a model with density functions
¹f� .x/; � 2 �º, where � � R

q . Define random variables ´i;n.�/ as

´i;n.�/ D nP� .Bn.�i // ; i D 1; : : : ; n :

Let h W .0;1/ ! .�1; 0� be a strictly concave function that has its maximum at x D 1. The
following functions are some examples of such h:

h1.x/ D ln x � x C 1; h2.x/ D .1 � x/ ln x; h3.x/ D �j1 � x
1=pjp;

h4.x/ D �j1 � xj
p; h5.x/ D sgn.1 � ˛/.x˛ � ˛x C ˛ � 1/;

where ˛ > 0, ˛ ¤ 1 and p � 1. Here, h2 corresponds to Jeffreys’ divergence measure, h3 to the
Hellinger distance, h4 to Vajda’s measure of information and h5 to Rényi’s divergence measure.
It is natural to generalize the maximum spacing method to the multivariate case and to define
the generalized maximum spacing function Sn.�/ as follows:

Sn.�/ D
1

n

nX
iD1

h.´i;n.�// :

Definition 1. The parameter value that maximizes Sn.�/ is called the generalized maximum
spacing estimate (GMSP estimate) of � and denoted by O�n. If sup� Sn.�/ is not attained for
any � in the admissible set �, the GMSP estimate O�n is defined as any point of � that satisfies

Sn. O�n/ � �cn C sup
�2�

Sn.�/ ;

where cn > 0 is a sequence of constants such that cn ! 0 as n!1.

We need some further notation. Let jjB.x; r/jj denote the volume of the ball B.x; r/. Define
random variables �i;n as

�i;n D njjBn.�i /jj ; i D 1; : : : ; n:

Let

´n.�; x; y/ D nP� .B.x; rn// ; where jjB.x; rn/jj D y=n :

© 2015 Board of the Foundation of the Scandinavian Journal of Statistics.
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In Ranneby et al. (2005), it was shown that .�i ; �i;n/ converges in distribution to .X; Y /, where
X has density g.x/ and Y jX D x is exponentially distributed with the parameter g.x/. Denote
the distribution function of .�i ; �i;n/ by Pn.x; y/ and the distribution function of .X; Y / by
P.x; y/, then the density of .X; Y / is given by p.x; y/ D g2.x/e�yg.x/, where y > 0. Consider
a constant M > 0 and define the following functions:

tM .x/ D max¹�M;h.x/º ; Tn.M; �/ D
1

n

nX
iD1

tM .´i;n.�// ;

T .M; �/ D

Z
tM .yf� .x//dP.x; y/ ; T .�/ D

Z
h.yf� .x//dP.x; y/:

Observe that Tn.M; �/ is an approximation to Sn.�/ in the neighbourhood of sup� Sn.�/, and
T .M; �/ is the limiting function of E Tn.M; �/. Further, T .�/ D limM!1 T .M; �/.

1.3. Consistency of the generalized maximum spacing estimate

We will prove both weak consistency and strong consistency of the GMSP estimate in two
distinguished cases:

(1) The assigned model class is correct, that is, there exists �0 2 � such that g.x/ D f�0.x/.
(2) The true density g.x/ does not necessarily belong to ¹f� .x/; � 2 �º.

The idea is to approximate Sn.�/ with a bounded function Tn.M; �/. Suppose Sn.�/ converges
to T .�/ uniformly in � and that T .�/ has a unique maximum at �0. With convergence, we mean
either convergence in probability or almost surely. Then Sn. O�n/ converges to sup� T .�/ D
T .�0/ and Sn. O�n/ � T . O�n/ converges to zero, implying that T . O�n/ converges to T .�0/. An
identifiability condition then implies the convergence of O�n to �0. However, ensuring uniform
convergence of Sn.�/ is too restrictive. Because we are interested in convergence of sup� Sn.�/,
it does not matter what happens with small values of Sn.�/. Therefore, we can consider the
approximation Tn.M; �/ and rely on uniform convergence of Tn.M; �/. To obtain consistent
GMSP estimates, we need conditions that prevent distributions corresponding to neighbouring
parameter values from varying too much.

Condition C1 (continuity condition). For each " > 0 and � > 0, there exists an integer m, a
partition of � into disjoint sets �1; : : : ; �m, compact sets Kj D Aj � Œbj;1; bj;2� � R

d �RC

and parameter values  j 2 �j , j D 1; : : : ; m, such that for each j

(i) P..X; Y / 2 Kj / > 1 � �.
(ii) sup�2�j j´n.�; x; y/ � ´n. j ; x; y/j < " for all .x; y/ 2 Kj and for all n � n�."; �/.

Condition C2 (identifiability condition). There exists a point �0 2 � that uniquely maximizes
T .�/. For each ı > 0, there exists a constant M1 DM1.ı/ such that

sup
�2Bc.�0;ı/

T .M1; �/ < T .�0/ :

For comments and examples regarding the continuity condition C1, see Ranneby (1984),
Ekström (1998) and Ranneby et al. (2005). The identifiability condition C2 is a strong iden-
tifiability condition. When weak identifiability conditions are used instead, these are usually
combined with other conditions implying that a strong identifiability condition is satisfied.

© 2015 Board of the Foundation of the Scandinavian Journal of Statistics.
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Proposition 1. Under the following assumptions, C2 is satisfied:

(i) For almost all x, f� .x/ is a continuous function of � , � 2 �.
(ii) For each � 2 N� �� and � 0 2 �, lim� 0!� f� 0.x/ exists.

(iii) For � 2 N�, � ¤ �0 and � 0 2 �, �
�
¹x W lim� 0!� f� 0.x/ ¤ f�0.x/º

�
> 0, where � is

Lebesgue measure.

Proof. When the assigned model class is true, an application of Jensen’s inequality condi-
tionally on Z D Yg.X/, together with .i i i/; guarantees that T .�/ has a unique maximum
at �0:

T .�/ D EŒh.Yf� .X//� D EZEŒh.Zf� .X/=g.X//jZ� � EŒh.Yg.X//� D T .�0/:

In the case of wrong model class, we assume that T .�/ has a unique maximum at �0. For
any fixed � , T .M; �/ is a sequence of decreasing functions, and according to the monotone
convergence theorem, T .M; �/ & T .�/ as M ! 1. The Lebesgue dominated convergence
theorem, together with .i/ and .i i/, implies that for every M > 0, T .M; �/ is a continuous
function of � for � 2 N�. Fatou’s lemma gives that T .�/ is upper semi-continuous for � 2 N�.

Assume that � is bounded, take an arbitrary ı > 0 and consider the following compact
subset of N�: ¹� W j� � �0j � ıº. Because T .�/ is upper semi-continuous, it attains its maximum
at � D ��, say (Royden, 1968, p. 161). Let T .�0/ � T .��/ D aı . For � 2 ¹� W j� � �0j �
ıº, define U.M; �/ D max¹T .M; �/; T .��/º. An application of Dini’s theorem implies that
supj���0j�ı U.M; �/! T .��/. Thus, for M > M1.ı/,

sup
j���0j�ı

T .M; �/ � sup
j���0j�ı

U.M; �/ � T .��/C
aı

2
< T .�0/:

If � is not bounded, make one-to-one monotone continuous transformations so that the
transformed parameter space

� D ¹.	1; : : : ; 	q/ W 	i D vi .�i /; i D 1; : : : ; q; � 2 �º

is a bounded subset of Rq .

In Ranneby et al. (2005), it was shown that .�1; �1;n/ and .�2; �2;n/ are asymptotically
independent. In the proof of weak consistency, it is sufficient with asymptotic independence
between .�1; �1;n/ and .�2; �2;n/, implying that the covariances tend to zero. To prove strong
consistency, we need to show that the covariances are of order 1=n, and here, the conditional
approach of Schilling (1986) simplifies matters. Because we work only with the nearest neigh-
bours, we can distinguish between the following five mutually exclusive sets for various nearest
neighbour geometries of �1 and �2:

D1 D ¹NN1 D �2; NN2 D �1º; D2 D ¹NN1 D NN2º; D3 D ¹NN1 D �2; NN2 ¤ �1º;

D4 D ¹NN1 ¤ �2; NN2 D �1º; D5 D ¹NN1 ¤ �2; NN2 ¤ �1; NN1 ¤ NN2º:

Lemma 1. Let �1; : : : ; �n be independent identically distributed d-vectors with distribution P0
that is absolutely continuous with respect to Lebesgue measure. Then P.Dk/ D O.n�1/ for
k D 1; : : : ; 4, and thus, limn!1 P.D5/ D 1.

© 2015 Board of the Foundation of the Scandinavian Journal of Statistics.
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Proof. We have P.D1/ < P.NN1 D �2/ D O.n�1/. Let NN.�m/
l

denote the nearest
neighbour of �l in the set without observation �m. Then

P.D2/ D .n � 2/P.NN1 D �3jNN2 D �3/P.NN2 D �3/

< n�2
n�1

P.NN.�2/
1

D �3jNN2 D �3/ D n�2
n�1

P.NN.�2/
1

D �3/ D
1
n�1

:

Since P.D3/ D P.D4/ D 1=.n � 1/ � P.D1/, obviously limn!1 P.D5/ D 1.

Observe that in D5, �1 and �2 have different neighbours, and they are not each other’s
neighbours. Therefore, .�1; �1;n/ and .�2; �2;n/ are conditionally independent given D5.
Since P.D5/ ! 1 according to lemma 1, asymptotic independence of .�1; �1;n/ and
.�2; �2;n/ follows:

Lemma 2. Let �1; : : : ; �n be independent identically distributed d-vectors with density function
g.x/. Then .�1; �1;n/ and .�2; �2;n/ are asymptotically independent, that is, for any measurable
sets A1; A2 � R

d � R
C,

lim
n!1

P..�1; �1;n/ 2 A1; .�2; �2;n/ 2 A2/ D

Z
A1

dP.x; y/

Z
A2

dP.x; y/:

2. Weak consistency

In Ranneby et al. (2005), weak consistency of MSP estimates was proved for h.x/ D ln x
under the assumption that g.x/ belongs to the assigned model class. In this article, we give
also conditions needed for consistency to hold when the assigned model class is not necessarily
true. Because of the modified definition of the generalized MSP function Sn.�/, the proof of
weak consistency can be simplified. To prove weak consistency of the GMSP estimate, we need
an integrability condition that will be called W1 and W2, respectively, for the cases when the
assigned model class is true and when it is not necessarily true.

Assumption W1. Suppose g.x/ belongs to the assigned model class, that is, there exists �0 2 �
such that g.x/ D f�0.x/. Assume that

R1
0
h2.u/e�udu <1.

Assumption W2. Suppose the assigned model class is not necessarily true, that is, the density
g.x/ does not have to belong to ¹f� .x/; � 2 �º. Let �0 be the parameter value that maximizes
T .�/. Assume that

E h2.´1;n.�0//!

Z
h2.yf�0.x//dP.x; y/ <1 :

We can now state the main theorem of this section.

Theorem 1. Let �1; : : : ; �n be a sequence of independent and identically distributed (i.i.d.) vectors
in R

d with absolutely continuous distribution P0 and density function g.x/. Suppose condi-
tions C1 and C2 hold. Suppose in addition that (i) W1 holds and (ii) W2 holds. Under these

assumptions, for both (i) and (ii), O�n
p
! �0.

To prove weak consistency, we will show that Sn.�0/
p
! T .�0/ and that Tn.M; �/

p
! T .M; �/

uniformly in � . These two results together with the identifiability condition then imply that O�n
is a consistent estimator.

© 2015 Board of the Foundation of the Scandinavian Journal of Statistics.
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Lemma 3. Let �1; : : : ; �n be a sequence of i.i.d. vectors in R
d with absolutely continuous

distribution P0 and density function g.x/.

(i) Suppose W1 holds. Then

Sn.�0/ D
1

n

nX
iD1

h.´i;n.�0//
p
!

Z
h.u/e�udu :

(ii) Suppose W2 holds. Then

Sn.�0/
p
!

Z
h.yf�0.x//dP.x; y/ D T .�0/ :

Proof. We prove (i), and the proof of (ii) is analogous. The exchangeability of ´i;n.�0/ gives
that ESn.�0/ D E h.´1;n.�0// and

Var.Sn.�0// D
1

n
Var.h.´1;n.�0///C

n � 1

n
Cov.h.´1;n.�0//; h.´2;n.�0/// :

As ´1;n.�0/ D nP0.Bn.�1// has the following density:

f´1;n.u/ D
n�1
n

�
1 � u

n

�n�2
; u � n ;

the Lebesgue dominated convergence theorem implies

E h.´1;n.�0//!

Z 1
0

h.u/e�udu ; E h2.´1;n.�0//!

Z 1
0

h2.u/e�udu :

Because h.´1;n.�0// is a function of .�1; �1;n/; and h.´2;n.�0//, a function of .�2; �2;n/, it fol-
lows from lemma 2 that they are asymptotically independent. This and the convergence of the
first and second moment of h.´1;n.�0// give that limn!1 Cov.h.´1;n.�0//; h.´2;n.�0/// D 0.
Thus, the convergence of Sn.�0/ in probability follows by Chebyshev’s inequality.

For (ii) observe that for every n, h.´n.�0; x; y// < 1C h2.´n.�0; x; y// and

h.´n.�0; x1; y1//h.´n.�0; x2; y2// < h
2.´n.�0; x1; y1//C h

2.´n.�0; x2; y2// :

Thus, the convergence of Eh.´1;n.�0// and EŒh.´1;n.�0//h.´2;n.�0//� follows because of W2
by the generalized Lebesgue dominated convergence theorem.

Lemma 4. Let �1; : : : ; �n be a sequence of i.i.d. vectors in R
d with absolutely continuous distri-

bution P0. Then for any � 2 �, Tn.M; �/
p
! T .M; �/. Under condition C1, the convergence is

uniform in � .

Proof. The proof is analogous to the proof of lemma 3 in Ranneby et al. (2005), and will
therefore not be repeated here.

We can now complete the proof of theorem 1.

Proof. Consider the case (i), the proof is analogous for (ii). To prove the consistency of O�n, we
apply lemma 3 and lemma 4. Consider arbitrary ı > 0. Choose M1.ı/ according to condition
C2 and consider any M > M1. Define " > 0 as follows:

" D T .�0/ � sup
�2Bc.�0;ı/

T .M; �/ : (1)

© 2015 Board of the Foundation of the Scandinavian Journal of Statistics.
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According to lemma 3, 9n1."; ı/ such that 8n > n1,

P.jSn.�0/ � T .�0/j � "=4/ < ı=2 :

Lemma 4 implies that 9n2."; ı/ such that 8n > n2,

P.jTn.M; O�n/ � T .M; O�n/j � "=2/ < ı=2 :

Choose n3 so that cn < "=4 for n > n3. Take n� D max¹n1; n2; n3º. Then 8n > n�, the
following sequence of inequalities holds with probability larger than 1 � ı:

T .�0/ � "=2 � Sn.�0/ � cn � Sn. O�n/ � Tn.M; O�n/ � T .M; O�n/C "=2 : (2)

Therefore, T .M; O�n/ � T .�0/ � " and the identifiability condition implies that O�n 2 B.�0; ı/.

Thus, O�n
p
! �0 follows.

3. Strong consistency

The general idea for proving strong consistency of the GMSP estimate is the same as in the

case of weak consistency. We are going to show that Sn.�0/
a:s:
! T .�0/ and that Tn.M; �/

a:s:
!

T .M; �/ uniformly in � . This implies that there exists a null set N such that 8! 2 ˝ n N ,
Sn.�0/! T .�0/ and Tn.M; O�n/ � T .M; O�n/! 0 as n!1. Consider arbitrary ı > 0 and let
" > 0 be defined as in (1). Then 8! 2 ˝ nN there exists n�.!/ such that 8n > n�, the sequence
of inequalities given in (2) holds. This implies that O�n.!/ 2 B.�0; ı/ and O�n.!/ ! �0. Since

this holds on a set of measure one, O�n
a:s:
! �0 follows. Therefore, to prove strong consistency,

we have to show that

(I) Sn.�0/ D
1
n

Pn
iD1 h.´i;n.�0//

a:s:
! T .�0/.

(II) Tn.M; �/ D
1
n

Pn
iD1 tM .´i;n.�//

a:s:
! T .M; �/ for any � 2 �.

(III) 1
n

Pn
iD1 I..�i ; �i;n/ 2 Kl /

a:s:
! P..X; Y / 2 Kl /, with Kl defined in C1.

Observe that (III) is needed for the uniform convergence of Tn.M; �/, see the proof of lemma
3 in Ranneby et al. (2005).

To prove strong consistency of the GMSP estimate, we need an additional integrability con-
dition that we call S1 and S2, respectively, for the cases when the assigned model class is true
and when it is not necessarily true.

Assumption S1. Suppose g.x/ belongs to the assigned model class, that is, there exists �0 2 �
such that g.x/ D f�0.x/. Assume thatZ 1

0

u2.h0.u//2e�udu <1:

Assumption S2. Suppose the assigned model class is not necessarily true, that is, the density
g.x/ does not have to belong to ¹f� .x/; � 2 �º. Let �0 be the parameter value that maximizes
T .�/; and let 
n.�/ be the distribution of ´1;n.�0/ with limit distribution 
.�/. Assume thatZ 1

0

u2.h0.u//2d
n.u/!

Z 1
0

u2.h0.u//2d
.u/ <1 :

Theorem 2. Let �1; : : : ; �n be a sequence of i.i.d. vectors in R
d with absolutely continuous dis-

tribution P0 and density function g.x/. Suppose conditions C1 and C2 hold. Suppose in addition

© 2015 Board of the Foundation of the Scandinavian Journal of Statistics.
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that (i) W1 and S1 hold and (ii) W2 and S2 hold. Under these assumptions, for both (i) and (ii),
O�n
a:s:
! �0.

Proof. Denote every single term in the sums of (I)–(III) by hi;n and let Ehi;n D �n. Define
Sn, S�n and Hn as

Sn D

nX
iD1

hi;n; S�n D

nX
iD1

.hi;n � �n/; Hn D
S�n
n
:

Since �n converges for (I)–(III), to prove the almost-sure convergences in (I)–(III), we need to

show that Hn
a:s:
! 0 in all the three cases. Write Hn as

Hn D
m2

n

�
Hm2 C

1

m2
.S�n � S

�
m2
/

�
; m2 � n < .mC 1/2:

Let Wm D max¹ 1
m2
jS�n � S

�
m2
j W m2 � n < .mC 1/2º. Then jHnj � jHm2 j CWm, and it is

sufficient to show that

Hm2
a:s:
! 0 and Wm

a:s:
! 0 as m!1: (3)

To prove (3), we use the Borel-Cantelli lemma and show that for every " > 0,

P1
mD1 P.jHm2 j > "/ �

P1
mD1

VarH
m2

"2
<1,P1

mD1 P.jWmj > "/ �
P1
mD1

EW2
m

"2
<1.

For this to hold, we need that VarHn D O.n�1/ and E W 2
n D O.n�2/. Lemma 5 and theorem

3 in the succeeding texts imply that these conditions are fulfilled under the assumptions of
the theorem.

An upper bound on VarHn and E W 2
n can be obtained through an upper bound on VarSn.

We use the approach of Evans (2008), where the Efron-Stein jackknife inequality for the vari-
ance of symmetric statistics is used to obtain an upper bound on VarSn. Evans (2008) uses
partly the work of Reitzner (2003) on random polytopes, where an upper bound on VarSn is
received by adding a sample point �nC1 and considering the difference between Sn and SnC1.

Lemma 5. Suppose E.
Pn
iD1.hi;n � hi;nC1//

2 D O.1/. Then VarHn D O.n�1/ and E W 2
n D

O.n�2/.

Proof. Since Sn is invariant under permutations of its arguments, applying the Efron-Stein
inequality to Sn (Evans, 2008, p. 3180-3181) gives

VarHn D
1

n2
VarSn �

nC 1

n2
E.Sn � SnC1/

2;

where E.Sn � SnC1/2 � 2E
�Pn

iD1.hi;n � hi;nC1/
�2
C 2Eh2

nC1;nC1
. For Wm, we obtain

Wm �
1

m2

.mC1/2�1X
jDm2C1

jS�j � S
�
j�1j; thus EW 2

m �
2

m3

.mC1/2�1X
jDm2C1

E.S�j � S
�
j�1/

2:

For E.S�n � S
�
nC1

/2, we have

E.S�n � S
�
nC1/

2 � 3E.Sn � SnC1/
2 C 3n2.�n � �nC1/

2 C 3�2nC1;

© 2015 Board of the Foundation of the Scandinavian Journal of Statistics.
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where

.�n � �nC1/
2 D

1

n2

"
E

 
nX
iD1

.hi;n � hi;nC1/

!#2
�

1

n2
E

 
nX
iD1

.hi;n � hi;nC1/

!2
:

For (II) and (III), Eh2
i;nC1

D O.1/ is trivial, and for (I), it is implied by W1 and W2. Thus, it

follows that if E
�Pn

iD1.hi;n � hi;nC1/
�2

is bounded for large n, then VarHn D O.n�1/ and
E W 2

n D O.n�2/.

To prove that E
�Pn

iD1.hi;n � hi;nC1/
�2
D O.1/, we use exchangeability of di;n D hi;n �

hi;nC1, i D 1; : : : ; n, and conditioning on the events ¹�nC1 2 Bn.�i /º and ¹�nC1 … Bn.�i /º,
i ¤ n C 1. If �nC1 … Bn.�i /, then BnC1.�i / D Bn.�i /. Observe that for (a) and (b) in
the succeeding theorem, the variables di;n are bounded. The proof of theorem 3 is given in
the Appendix.

Theorem 3. Let �1; : : : ; �nC1 be a sequence of i.i.d. vectors in R
d with absolutely continuous

distribution P0 and density function g.x/. Let hi;n be defined as

(a) hi;n D max¹�M;h.´i;n.�//º.
(b) hi;n D I..�i ; �i;n/ 2 Kl /, where Kl is defined in condition C1.
(c) hi;n D h.´i;n.�0// D h.nP�0.Bn.�i ///.

Then E
�Pn

iD1.hi;n � hi;nC1/
�2
D O.1/. For .c/, the result holds under the additional assump-

tions W1 and S1 when the assigned model class is true, and under W2 and S2 when the assigned
model class is not necessarily true.

4. Model validation

In this section, we will show that for checking the validity of the assigned model class, it is
useful to study the behaviour of the maximum spacing function under different divergence
measures. Since T .�/ � T .�0/ (with equality if and only if f� .x/ D g.x/ a.s.), values of Sn. O�n/
‘much’ smaller than T .�0/ give rise to doubts about the correctness of the assigned model.
The asymptotic distribution of

p
nSn.�0/ can be used to obtain an indication of the assigned

model class being wrong. Since Sn. O�n/ � Sn.�0/, under
p
n.Sn.�0/� T .�0// � AsN .0; �2

h
/ it

holds that

P

�
Sn. O�n/ � T .�0/ � ´1�˛

�h
p
n

�
� P

�
Sn.�0/ � T .�0/ � ´1�˛

�h
p
n

�
' ˛;

where ´1�˛ denotes the .1�˛/-quantile of the standard normal distribution. Therefore, values
of Sn. O�n/ smaller than T .�0/ � ´1�˛�h=

p
n are unlikely to occur for large sample sizes.

In Zhou & Jammalamadaka (1993), asymptotic normality of
p
nSn.�0/ is derived through

the convergence of the empirical process for the multivariate spacings. The asymptotic variance
is given by �2

h
D
R1
0

R1
0
K.s; t/dh.s/dh.t/, where

K.s; t/ D e�t � e�s�t
�
1 � s C st �

Z
W.s;t/

.eˇ.s;t;w/ � 1/dw

�
; 0 � s � t � 1;

W.s; t/ D ¹w 2 R
d W r1 � jwj � r1 C r2º; ˇ.s; t; w/ D

Z
B.0;r1/\B.w;r2/

d´;
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with r1 and r2 corresponding to the volumes t and s of the balls B.0; r1/ and B.0; r2/,
respectively.

Model validation example. We are going to demonstrate how the GMSP method can be used
to discover that the assigned model class is wrong. Suppose, we believe our data come from a
bivariate normal distribution with known covariance matrix I , that is f�.x/ 2 N .�; I /, but
the true distribution is actually a normal mixture, so g.x/ is the density of

.1 � �/N .0; I /C �N .�0; I /; � 2 .0; 1/:

Under the true model,

lim
n!1

EgSn.�0/ D Tg.�0/ D

Z
h.u/e�udu :

Let O�n denote the GMSP estimate of �, and let �� denote the parameter value that maximizes
the limiting function of the expected value of the GMSP function, that is, �� maximizes

T .�/ D

Z
h.yf�.x//g

2.x/e�yg.x/ dx dy D Tg.�0/ � a.�/:

Thus, a.��/ presents the difference in limn!1 ESn. O�n/ under the true distribution and the
assigned model class. In Table 1, the limits of the expected value of the GMSP function are
presented for the information measures h1, h2 and h3 with p D 2. The parameter values
�� that minimize a.�/ for h1, h2 and h3 are the values that minimize the Kullback-Leibler
information measure, Jeffreys’ divergence measure and the Hellinger distance between g and
f�, respectively. For h1, the minimizing argument can be found analytically: a.�/ is mini-
mized for �� D ��0. For Jeffreys’ divergence and the Hellinger distance, we have minimized
a.�/ numerically.

In Table 2, the values of �� and a.��/ are presented for h1, h2 and h3 in the case of five
values of �0 when � D 0:1. The models corresponding to different �0 are ordered according to
increasing deviation from the mean of the mixture part with weight 1 � �.

The conditions of asymptotic normality of Zhou & Jammalamadaka (1993) are satisfied
for g and for h1, h2 and h3 of our example. The values of �h1 , �h2 and �h3 are presented in
Table 3. We can observe that �� is always situated on the line that connects the expected values

Table 1. Limits of the expected value of the GMSP function for different information measures

h1.x/ D lnx � xC 1 h2.x/ D .1� x/ lnx h3.x/ D �.1�
p
x/2

T.�/ �� � a.�/ �1� a.�/ �2C
p
� � a.�/

a.�/
R
g ln. g

f�
/

R
.g � f�/ ln. g

f�
/

p
�.1�

R p
f�g/

Table 2. Values of �� and a.��/ for h1, h2 and h3 when � D 0:1

h1 h2 h3

�0 �� a.��/ �� a.��/ �� a.��/

M(1,2) (0.1, 0.2) 0.058 (0.084, 0.167) 0.092 (0.076, 0.152) 0.018
M(2,3) (0.2, 0.3) 0.311 (0.126, 0.188) 0.411 (0.062, 0.093) 0.058
M(1,4) (0.1, 0.4) 0.469 (0.058, 0.231) 0.592 (0.019, 0.075) 0.070
M(4,4) (0.4, 0.4) 1.119 (0.205, 0.205) 1.299 (0.011, 0.011) 0.088
M(1,8) (0.1, 0.8) 2.600 (0.050, 0.400) 2.868 (0.0001, 0.0004) 0.091
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of the two mixture parts and that the Hellinger distance is least sensitive to deviations from the
assigned model. When the true distribution does not belong to the assigned model, the GMSP
estimates for the different divergence measures converge to different values opposite to the sit-
uation with a correct model specification. Thus, if more than one divergence measure is used,
and there is an apparent difference between the estimates, we have an indication of a misspec-
ification of the model. A more direct indication would be to look at the value of the spacing
statistic. For large n, we expect Sn. O�n/ < T .�0/ � 1:64�h=

p
n to hold with an approximate

probability of at most 0.05 under the true model. Thus, if the considered model class is wrong
and a.��/ large enough, a.��/ > 1:64�h=

p
n at least, then our Sn. O�n/ would probably be

smaller than the aforementioned bound. Therefore, the comparison of 1:64�h=
p
n with a.��/

for different n can indicate what sample sizes are needed to give us a possibility to detect vio-
lations from the assumed model class under different information measures. Comparing the
values in Table 2 and Table 3, we can see that for h1 and h2, the sample size n D 100 would
be enough to make it possible to detect a misspecification for all the models except M(1,2). For
the Hellinger divergence, larger sample sizes are needed. To discover a small deviation like in
model M(1,2), even the sample size n D 400 would not be enough. The comparisons are based
on the asymptotic distributions, although the situation may be different for small and moderate
sample sizes.

To illustrate how this theoretical reasoning based on asymptotics works in practice, we per-
formed the following simulation study. For every model in Table 2 and in addition for the true
model, we generated one hundred data sets of size n D 100. For every data set, we calculated
the parameter estimate O� and the value of the spacing function S100. O�/ under h1, h2 and h3.
In Table 4, the mean values of O� for each model are presented. Columns ‘< bi ’ give the number
of data sets with the value of the spacing function lower than bi D Tg.�0/ � 0:164�hi . Model
M(0,0) stands for the true model. The simulation study confirms that for h1 and h2 and mod-
els M(2,3)–M(1,8), there is a fair chance to detect the misspecification. We can also see that
when the model is correct, the GMSP estimates based on the different information measures
are close to each other, while the difference between them increases with increasing deviation

Table 3. Values of 1:64�h=
p
n for information measures h1,

h2 and h3 for different sample sizes n

n �h1 D 1:0977 �h2 D 1:6904 �h3 D 0:3540

100 0.180 0.277 0.058
200 0.127 0.196 0.041
400 0.090 0.139 0.029

Table 4. Results from the simulation study with n D 100. Here, b1 D �0:757, b2 D �1:277
and b3 D �0:286

h1 h2 h3

�0 mean( O�) < b1 mean( O�) < b2 mean( O�) < b3

M(0,0) (0.009, 0.005) 4 (0.008, 0.008) 3 (0.007, 0.009) 2
M(1,2) (0.086, 0.168) 8 (0.077, 0.143) 8 (0.073, 0.132) 8
M(2,3) (0.210, 0.281) 61 (0.150, 0.179) 54 (0.085, 0.083) 31
M(1,4) (0.109, 0.396) 80 (0.079, 0.255) 72 (0.036, 0.095) 39
M(4,4) (0.421, 0.426) 99 (0.253, 0.254) 95 (0.034, 0.024) 56
M(1,8) (0.086, 0.879) 100 (0.037, 0.537) 100 (�0:042, 0.030) 61
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from the true model. Furthermore, it is obvious that the Hellinger distance is robust against
the studied misspecifications.

It can be concluded that to detect deviations from the assigned model, preferably spacing
functions based both on the Kullback-Leibler information and the Hellinger distance should
be used, and the values of the spacing functions as well as the parameter estimates should
be compared.

Acknowledgements

The authors would like to thank the reviewers for the comments and suggestions that helped
to improve the article. The research of K. Kuljus was supported by Swedish University of
Agricultural Sciences financing project KON 50210.

References

Cheng, R. C. & Amin, N. A. (1983). Estimating parameters in continuous univariate distributions with a
shifted origin. J. R. Stat. Soc. Ser. B. Stat. Methodol. 45, (3), 394–403.

Ekström, M. (1997). Strong consistency of the maximum spacing estimate. Theory Probab. Math. Stat. 55,
55–73.

Ekström, M. (1998). On the consistency of the maximum spacing method. J. Statist. Plann. Inference 70,
(2), 209–224.

Ekström, M. (2001). Consistency of generalized maximum spacing estimates. Scand. J. Stat. 28, 343–354.
Evans, D. (2008). A law of large numbers for nearest neighbour statistics. Proc. R. Soc. A 464, 3175–3192.
Evans, L. & Gariepy, R. (1992). Measure theory and fine properties of functions, CRC Press, Boca Raton.
Ghosh, K. & Jammalamadaka, S. R. (2001). A general estimation method using spacings. J. Statist. Plann.

Inference 93, (1-2), 71–82.
Jimenez, R. & Yukich, J. E. (2002). Asymptotics for statistical distances based on Voronoi tessellation.

J. Theor. Probab. 15, (2), 503–541.
Penev, S. & Ruderman, A. (2011). On the behaviour of tests based on sample spacings for moderate

samples. J. Statist. Plann. Inference 141, (3), 1240–1249.
Ranneby, B. (1984). The maximum spacing method. An estimation method related to the maximum

likelihood method. Scand. J. Stat. 11, (2), 93–112.
Ranneby, B. (1996). Spatial and temporal models in contextual classification. In Spatial accuracy assess-

ment in natural resources and environmental sciences: second international symposium (eds Mowrer, H. T.,
Czaplewski, R. L. & Hamre, R. H.), Fort Collins, Colorado; 451–458.

Ranneby, B. & Ekström, M. (1997). Maximum spacing estimates based on different metrics. Research
Report, Umeå University.

Ranneby, B., Jammalamadaka, S. R. & Teterukovskiy, A. (2005). The maximum spacing estimation for
multivariate observations. J. Statist. Plann. Inference 129, (1-2), 427–446.

Reitzner, M. (2003). Random polytopes and the Efron-Stein jackknife inequality. Ann. Probab. 31, (4),
2136–2166.

Royden, H. L. (1968). Real analysis, Macmillan, New York.
Schilling, M. F. (1986). Mutual and shared neighbor probabilities: finite- and infinite-dimensional results.

Adv. Appl. Prob. 18, (2), 388–405.
Shao, Y. & Hahn, M. G. (1999). Strong consistency of the maximum product of spacings estimates with

applications in nonparametrics and in estimation of unimodal densities. Ann. Inst. Statist. Math. 51, (1),
31–49.

Zhou, S. & Jammalamadaka, S. R. (1993). Goodness of fit in multidimensions based on nearest neighbour
distance. Nonparametric Statistics 2, 271–284.

Received March 2014, in final form March 2015

Kristi Kuljus, Department of Mathematics and Mathematical Statistics, UmeåUniversity, 901 87 Umeå,
Sweden.
E-mail: kristi.kuljus@math.umu.se

© 2015 Board of the Foundation of the Scandinavian Journal of Statistics.



1104 K. Kuljus and B. Ranneby Scand J Statist 42

Appendix

Lemma 6. The density function of ´1;nC1.�/ for arbitrary � 2 � (f� ¤ g) is for 0 < u < nC1
given by

vnC1.�; u/ D

Z
g.x/

 
1 �

u g.x/
f� .x/C"n.x/

nC 1

!n�1
g.x/

f� .x/C "n.x/

n

nC 1
dx ; (4)

where "n.x/! 0 as n!1.

Proof. We start with deriving the distribution function of ´1;nC1.�/:

P.´1;nC1.�/ > u/ D

Z
g.x/P ..nC 1/P� .B.x;RnC1.1/// > u/ dx :

Observe that .n C 1/P� .B.x;RnC1.1/// > u holds if and only if all the observations
�2; : : : ; �nC1 fall outside the ball B.x; rn.�//, where rn.�/ satisfies P� .B.x; rn.�/// D u=.nC

1/. Recall that P0 denotes the probability measure for the true distribution. The Lebesgue-
Besicovitch differentiation theorem (Evans & Gariepy, 1992, p. 43) gives

1

P0.B.x; rn.�///

Z
B.x;rn.�//

dP�

dP0
.y/dP0 !

dP�

dP0
.x/ D

f� .x/

g.x/
:

Thus, we obtain

P0.B.x; rn.�/// D
u

nC 1

g.x/

f� .x/C "n.x/
;

where "n.x/! 0. Therefore,

P.´1;nC1.�/ > u/ D

Z
g.x/

�
1 �

u

nC 1

g.x/

f� .x/C "n.x/

�n
dx :

Differentiation under the integral sign gives the density function in (4). An application of the
Fubini-Tonelli theorem verifies that vnC1.�; u/ is a density function for ´1;nC1.�/.

Let Al � R
d and b, b1 and b2 be positive constants.

Lemma 7. Consider Kl;n D Al �
h
n
nC1

b; b
i
. Then

P..�1; �1;n/ 2 Kl;n/ D O.n�1/: (5)

Proof. Let V �1.y=n/ denote the radius of the ball with volume y=n. Note that the volume
of the nearest neighbour ball Bn.�1/ for fixed �1 D x exceeds y=n if and only if none of the
variables �2; : : : ; �n falls in the ball B.x; V �1.y=n//. Thus we obtain:

nP..�1; �1;n/ 2 Kl;n/ D n

Z
x2Aı

l

P.njjBn.�1/jj 2 Œ
n
nC1

b; b� j �1 D x/g.x/ dx

D n

Z
x2Aı

l

h
Œ1 � P0.B.x; V

�1. b
nC1

///�n�1 � Œ1 � P0.B.x; V
�1.b

n
///�n�1

i
g.x/ dx:

Let ´1 D P0.B.x; V
�1. b

nC1
/// and ´2 D P0.B.x; V

�1.b
n
///. Denote the radii of the balls

with volume b
nC1

and b
n

with r�n and rn, respectively. Then for some Q́ 2 Œ´1; ´2�,

.1 � ´1/
n�1 � .1 � ´2/

n�1 D �.n � 1/.1 � Q́/n�2.´1 � ´2/ � .n � 1/.´2 � ´1/:
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According to Lusin’s theorem (see e.g. p. 15 in Evans & Gariepy, 1992), we can choose the set
Al so that it is compact and g is continuous on Al . Thus, g.x/ � c on Al for some c > 0, and
we have for n large enough that

´2 � ´1 D

Z
B.x;rn/

g.y/dy �

Z
B.x;r�n /

g.y/dy D

Z
B.x;rn/\Bc.x;r

�
n /

g.y/dy

� cjjB.x; rn/ \ B
c.x; r�n /jj D c

�
b
n
� b
nC1

	
D

bc

n.nC 1/
:

Thus, it follows that nP..�1; �1;n/ 2 Kl;n/ � bc
R
x2Aı

l
g.x/dx � bc.

Lemma 8. Let Kl;n D Al �
h
n
nC1

b1; b1

i
[
h
n
nC1

b2; b2

i
. Then

P..�1; �1;n/ 2 Kl;n; .�2; �2;n/ 2 Kl;n/ D O.n�2/: (6)

Proof. Consider the five mutually exclusive nearest neighbour relationshipsD1; : : : ;D5 on p. 4.
The probability in (6) can then be written as

5X
kD1

P..�1; �1;n/ 2 Kl;n; .�2; �2;n/ 2 Kl;n jDk/P.Dk/: (7)

Note that each conditional probability in (7) denotes the common value of the respective prob-
ability in the group. Consider the conditional probability for D1, the cases D2;D3;D4 are
analogous. Since �1; : : : ; �n are exchangeable,

P..�1; �1;n/ 2 Kl;n; .�2; �2;n/ 2 Kl;n jD1/ � P..�1; �1;n/ 2 Kl;n jD1/

D P..�1; �1;n/ 2 Kl;n jNN1 D �2/ D P..�1; �1;n/ 2 Kl;n/:

For D5, the conditional independence of .�1; �1;n/ and .�2; �2;n/ and exchangeability imply

P..�1; �1;n/ 2 Kl;n; .�2; �2;n/ 2 Kl;n jD5/ D P..�1; �1;n/ 2 Kl;n/P..�2; �2;n/ 2 Kl;n/:

According to lemma 1, P.Dk/ D O.n�1/, k D 1; : : : ; 4. This and lemma 7 together
imply (6).

Lemma 9. Let �1; : : : ; �nC1 be a sequence of i.i.d. vectors in R
d with density g.x/. Suppose that

(i) S1 holds and (ii) S2 holds. Then for both (i) and (ii),

EŒh. n
nC1

´i;nC1.�0// � h.´i;nC1.�0//�
2 D O.n�2/:

Proof. We prove the statement for (i), the idea of the proof is the same for (ii). Let bi D
h.´i;nC1.�0//�h.

n
nC1

´i;nC1.�0//. Because the density of ´i;nC1.�0/ is under the true model
given by

f´i;nC1.u/ D
n
nC1

�
1 � u

nC1

	n�1
; u � nC 1 ;

we obtain

Eb2i D
n
nC1

R nC1
0

�
h.u/ � h

�
n
nC1

u
		2

.1 � u
nC1

/n�1du D n
nC1

I:
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Let h0� and h0
C

denote the left and right derivative of h, respectively. Because h is concave, the
following sequence of inequalities holds 8u 2 .0; nC 1/:

h0C.u/ � h
0
�.u/ �

h.u/ � h. n
nC1

u/
u
nC1

� h0C.
n
nC1

u/ � h0�.
n
nC1

u/:

Because h has its maximum at u D 1, h0� (and h0
C

) is positive when u < 1 and negative when
u > 1. Thus, the following relationships hold:

.h.u/ � h. n
nC1

u//2

u2

.nC1/2

�

8̂<
:̂
.h0�.

n
nC1

u//2; if u < 1 ;

.h0�.
n
nC1

u//2 C .h0�.u//
2; if 1 � u < nC1

n
;

.h0�.u//
2; if u � nC1

n
:

Therefore,

I�
R .nC1/=n
0

u2

.nC1/2
.h0�.

n
nC1

u//2.1 � u
nC1

/n�1duC
R nC1
1

u2

.nC1/2
.h0�.u//

2
�
1 � u

nC1

	n�1
du

D
R 1
0
´2

n2
.h0�.´//

2.1 � ´
n
/n�1 nC1

n
d´C

R nC1
1

u2

.nC1/2
.h0�.u//

2.1 � u
nC1

/n�1 du:

Because a concave function is differentiable almost everywhere, we obtain

n
nC1

I � 1

n2

R nC1
0

u2.h0.u//2.1 � u
nC1

/n�1du: (8)

The last integral converges by the Lebesgue dominated convergence theorem toR1
0
u2.h0.u//2e�udu as n!1. Thus, it follows that Eb2

i
D O.n�2/.

For (ii), the density of ´i;nC1.�0/ is given by vnC1.�0; u/ in lemma 6. The required conver-
gence in (8) follows because of the generalized Lebesgue dominated convergence theorem and
assumption S2.

Proof of theorem 3.

Proof.
(a) Let di;n D hi;n � hi;nC1 and d�

i;n
D hi;n � max¹�M;h.nC1

n
´i;n.�//º. By exchange-

ability, E.
Pn
iD1 di;n/

2 D nEd2
1;n
C n.n � 1/E.d1;nd2;n/. Therefore, we need to show

that Ed2
1;n
D O.n�1/ and E.d1;nd2;n/ D O.n�2/. Observe that Ed2

1;n
� 2MEjd1;nj.

Denote the event ¹�nC1 2 Bn.�1/º by DnC1.�1/, then

Ejd1;nj D EŒjd1;n j jDnC1.�1/�P.DnC1.�1//CEŒjd1;nj jD
c
nC1.�1/�P.D

c
nC1.�1//

� 2M=nCEjd�1;nj:

Let �n.x/ denote the probability measure of ´1;n.�/. Because h is concave, there exist
M1;M2 > 0, M1 < M2, such that h�1.�M/ D M1 and h�1.�M/ D M2. Let LM
denote the Lipschitz constant of max¹�M;h.x/º. Then

Ejd�1;nj D

Z M2

0

jmax¹�M;h.x/º �max¹�M;h.nC1
n
x/ºjd�n.x/ �

LMM2

n
: (9)

Thus, Ed2
1;n
D O.n�1/ follows.

To calculate Ejd1;nd2;nj, consider the following mutually exclusive events:

J1 D ¹�nC1 2 Bn.�1/; �nC1 2 Bn.�2/º; J2 D ¹�nC1 … Bn.�1/; �nC1 2 Bn.�2/º;

J3 D ¹�nC1 2 Bn.�1/; �nC1 … Bn.�2/º; J4 D ¹�nC1 … Bn.�1/; �nC1 … Bn.�2/º:
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Then Ejd1;nd2;nj D
P4
kD1EŒjd1;nd2;nj jJk �P.Jk/. Because P.NN1 D NN2/ D

O.n�1/, we have P.J1/ D O.n�2/. Because P.�nC1 2 Bn.�1// D 1=n, for k D 2; 3, it
holds that P.Jk/ � 1=n . Observe that

EŒjd1;nd2;nj jJ2� � 2MEŒjd1;nj jJ2� D 2MEjd
�
1;nj D O.n�1/:

Analogously, EŒjd1;nd2;nj jJ3� D O.n�1/. For J4, EŒjd1;nd2;nj jJ4� D Ejd�
1;n
d�
2;n
j.

Let �n.x; y/ denote the probability measure of .´1;n.�/; ´2;n.�//. Then analogously to
(9), we obtain Ejd�

1;n
d�
2;n
j � L2

M
M 2
2
=n2. Thus, Ejd1;nd2;nj D O.n�2/ follows.

(b) Here hi;n is the indicator function I..�i ; �i;n/ 2 Kl /, where �i;n D njjBn.�i /jj and
Kl D Al � Œbl;1; bl;2�. Let again di;n D hi;n � hi;nC1. Because of the exchangeability
property, we again need to study only Ed2

1;n
and Ejd1;nd2;nj. Observe that jd1;nj D 1

only in the following cases:

.1/ h1;n D 1; h1;nC1 D 0 ()

´
.1a/ �1 2 Al ; �1;n 2 Œbl;1; bl;2�; �1;nC1 < bl;1;

.1b/ �1 2 Al ; �1;n 2 Œbl;1; bl;2�; �1;nC1 > bl;2I

.2/ h1;n D 0; h1;nC1 D 1 ()

´
.2a/ �1 2 Al ; �1;n < bl;1; �1;nC1 2 Œbl;1; bl;2�;

.2b/ �1 2 Al ; �1;n > bl;2; �1;nC1 2 Œbl;1; bl;2�:

If �nC1 … Bn.�1/, then Bn.�1/ D BnC1.�1/ and �1;n < �1;nC1. Thus, in this case,
events (1a) and (2b) are impossible. Observe that under the condition �nC1 … Bn.�1/,
(1b) and (2a) can be jointly written as

.�1; �1;n/ 2 Kl;n; where Kl;n D Al � Œ
n
nC1

bl;1; bl;1� [ Œ
n
nC1

bl;2; bl;2�:

As in (a), we can condition on DnC1.�1/. Then

Ed21;n D EŒd
2
1;n jDnC1.�1/�P.DnC1.�1//CEŒd

2
1;n jD

c
nC1.�1/�P.D

c
nC1.�1//

< 1=nC P..�1; �1;n/ 2 Kl;n jD
c
nC1.�1// D 1=nC P..�1; �1;n/ 2 Kl;n/

.5/
D O.n�1/:

To calculateEjd1;nd2;nj, condition again on J1; : : : ; J4. Because P.J1/ D O.n�2/ and
jd1;nd2;nj � 1, we need to consider EŒjd1;nd2;nj jJk � for k D 2; 3; 4, where the cases
k D 2 and k D 3 are analogous. We have

EŒjd1;nd2;nj jJ2� � EŒjd1;nj jJ2� D P..�1; �1;n/ 2 Kl;n jJ2/

D P..�1; �1;n/ 2 Kl;n/
.5/
D O.n�1/;

EŒjd1;nd2;nj jJ4� D P..�1; �1;n/ 2 Kl;n; .�2; �2;n/ 2 Kl;n jJ4/

D P..�1; �1;n/ 2 Kl;n; .�2; �2;n/ 2 Kl;n/
.6/
D O.n�2/:

Because P.J2/ � 1=n and P.J3/ � 1=n, Ejd1;nd2;nj D O.n�2/ follows.
(c) Here, hi;n D h.´i;n.�0// D h.nP�0.Bn.�i ///. Write hi;n � hi;nC1 as

hi;n � hi;nC1 D .hi;n � Qhi;nC1/C . Qhi;nC1 � hi;nC1/ D ai C bi ;

where Qhi;nC1 D h. n
nC1

´i;nC1.�0// D h.nP�0.BnC1.�i ///. Then
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nX
iD1

.hi;n � hi;nC1/

!2
� 2

 
nX
iD1

ai

!2
C 2

 
nX
iD1

bi

!2
:

We are going to show that the expectation of both terms in the previous sum is bounded
above for large n. Consider the situation when adding a sample point. If �nC1 … Bn.�i /,
then Bn.�i / D BnC1.�i / and ai D 0. Let MnC1 be the stochastic set containing the
indices of the sample points, which have the new point �nC1 as the nearest neighbour:
MnC1 D ¹i W �nC1 2 Bn.�i /º. According to lemma 4.2 in Evans (2008), �nC1 can
be the nearest neighbour of at most ˇ D b2
d=2= � .d=2/c points of the set. Thus, the
Cauchy-Schwarz inequality implies that for a fixed ! 2 ˝,

 
nX
iD1

ai

!2
D

0
@ X
i2MnC1.!/

ai

1
A
2

�
X

i2MnC1.!/

1
X

i2MnC1.!/

a2i � ˇ

nX
iD1

a2i :

Since this holds for every !, we have E
�Pn

iD1 ai
�2
� ˇ

Pn
iD1Ea

2
i

. But

Ea2i �
2

n

h
E.h2i;nj�nC1 2 Bn.�i //CE.

Qh2i;nC1j�nC1 2 Bn.�i //
i

D
2

n
ŒE.h2i;n/CE.

Qhi;nC1/
2�;

where the last equality holds because h2
i;n

is determined by �1; : : : ; �n and is thus inde-
pendent of �nC1, and because of exchangeability of ´i;nC1.�0/, i D 1; : : : ; n C 1.
Under the assumptions of the theorem, limn!1Eh2

i;n
<1. Since limn!1Eh2

i;n
D

limn!1E Qh2
i;nC1

(follows because of the expression of the density for ´i;n.�0/, see

the proof of lemma 9), E
�Pn

iD1 ai
�2
D O.1/ follows. For .

Pn
iD1 bi /

2, applying the
Cauchy-Schwarz inequality and lemma 9 gives

E

 
nX
iD1

bi

!2
� nEb21 C n.n � 1/.Eb

2
1/
1=2.Eb22/

1=2 D O.1/:
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