
Investigating the representation and congruence
extension properties for quantales

Background in the theory of partially ordered monoids

Definition 1 By a partially ordered monoid (briefly, pomonoid) we mean a
monoid S endowed with a partial order ≤ such that

∀s1, s2, t1, t2 ∈ S, s1 ≤ s2, t1 ≤ t2 =⇒ s1s2 ≤ t1t2.

We then say that ≤ is compatible with the binary operation of S.

LetX be a poset. Then the setO(X) of all monotone transformations ofX is
a pomonoid with respect to the usual compositions of transformations and point-
wise order. Given a pomonoid S and a poset X, a (pomonoid) homomorphism
γ : S −→ O(X) is called an ordered representation of S by O(X). Let us
introduce the notation γs = (s)γ, s ∈ S. Then, it can be easily verified that

x · s = (x) γs

defines a right S-action on X that is monotone in both the variables. So, every
ordered representation of S gives rise to a right (equivalently, left) S-poset. The
converse is also true: every right (equivalently, left) S-poset gives an ordered
representation of S.

Definition 2 Let U be a subpomonoid of a pomonoid S. Then U is said to
have the ordered representation extension property (POREP) in S if for every
ordered representation γ : U −→ O(X), given by u 7−→ γu, there exists an
ordered representation α : S −→ O(Y ), given by s 7−→ αs, such that

1. X is a subposet of Y , and

2. for all u ∈ U , we have αu |X = γu.

Proposition 3 A subpomonoid U of a pomonoid S has POREP in S, if and
only if for every right U -poset XU the canonical mapping X −→ X ⊗U S (viz.
x 7−→ x⊗ 1) is an order-embedding (of posets).

Let S be a pomonoid. By an order-congruence on S we mean a congruence σ
on the underlaying monoid for which the quotient monoid S/σ can be equipped
with a partial order such that the canonical homomorphism σ\ : S −→ S/σ is
monotone.

Definition 4 Let U be a subpomonoid of a pomonoid S. Then U is said to
have the right order-congruence extension property (PORCEP) in S if for every
right order-congruence θ on U and every compatible partial order ≤θ on U/θ
there exists a right order-congruence Θ on S together with a compatible order
≤Θ on S such that for all u1, u2 ∈ U

[u1]θ ≤θ [u1]θ iff [u1]Θ ≤Θ [u1]Θ .
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Theorem 5 If a subpomonoid U has (POREP) in a pomonoid S then it has
(PORCEP) in S.

Definition 6 A pomonoid amalgam is a triple A ≡ (U ;S1, S2) of pomonoids
such that U = S1∩S2. We say that A is embeddable if there exists a pomonoid
W embedding S1 and S2 so that their intersection in W ‘coincides’with U .

Definition 7 Let U be a subpomonoid of a pomonoid S. Then the pair (U ;S)
is called an amalgamation pair if for every pomonoid T , the amalgam (U ;S, T )
is embeddable.

Theorem 8 If (U ;S) is an amalgamation pair then U has POREP in S.

Definition 9 A (unital) quantale Q is a pomonoid that is also a complete sup-
lattice such that for all S ⊆ Q

a (∨S) = ∨ (aS) ,

and
(∨S) b = ∨ (Sb) .

Definition 10 Let Q be a quantale. By a right Q-module we mean a sup-
lattice L equipped with a right Q-action, (a, x) 7−→ ax, a ∈ Q, x ∈ L, such
that,

1. ab(x) = a(b(x)).

2. 1x = x.

Aims and scope
The aim of this research is to find the analogues of POREP, PORCEP in

the context of quantales and explore the relationships among these properties
and amalgamation.
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