Studying the connection of Beth property with the surjectivity of epimorphisms

Beth property (BP) is a logical property, whereas the surjectivity of epimorphisms (ES) is an algebraic property. We shall understand their connection. By a logic \mathcal{L} we mean an ordered quadruple $(F_{\mathcal{L}}, M_{\mathcal{L}}, mng_{\mathcal{L}}, \models_{\mathcal{L}})$, where,

- 1. $F_{\mathcal{L}}$ is the set of formulas of \mathcal{L} , which are recursively defined from a set P of atomic formulas by means of some fixed set of logical connectives $C_n(\mathcal{L})$
- 2. $M_{\mathcal{L}}$ is the class of models of \mathcal{L} .
- 3. $mng_{\mathcal{L}}$ is a family of functions

$$\left\{mng_{\mathcal{L}}^{\mathfrak{M}}:\mathfrak{M}\in M_{\mathcal{L}}\right\},\,$$

having domain $F_{\mathcal{L}}$. (For every $\mathfrak{M} \in M_{\mathcal{L}}$, the function $mng_{\mathcal{L}}^{\mathfrak{M}}$ provides us with a tool to interpret the formulas of $F_{\mathcal{L}}$ for the 'machine' $\mathfrak{M} \in M_{\mathcal{L}}$.)

- 4. $\models_{\mathcal{L}}$, called the validity relation, is a relation from $M_{\mathcal{L}}$ to $F_{\mathcal{L}}$. (For $\mathfrak{M} \in M_{\mathcal{L}}$ and $\varphi \in F_{\mathcal{L}}$ we interpret $\mathfrak{M} \models_{\mathcal{L}} \varphi$ as φ is valid in \mathfrak{M}).
- 5. For all $\varphi, \psi \in F_{\mathcal{L}}$ and $\mathfrak{M} \in M_{\mathcal{L}}$,

if
$$\left[mng_{\mathcal{L}}^{\mathfrak{m}}\varphi = mng_{\mathcal{L}}^{\mathfrak{m}}\psi$$
 and $\mathfrak{M}\models_{\mathcal{L}}\varphi\right]$ then $\mathfrak{M}\models_{\mathcal{L}}\psi$.

Example (Propositional Logic \mathcal{L}_P)

- i. We have a set P of atomic formulas.
- ii. The set of logical connectives of \mathcal{L}_P is $\{\wedge, \neg\}, \land, \neg \notin P$. (Note that $(\psi \longrightarrow \phi) := \neg(\psi \land (\neg \phi))$ and $(\psi \lor \phi) := \neg(\neg \psi \land (\neg \phi))$.)
- iii. $F_{\mathcal{L}_P}$ is the smallest set containing P such that
 - (a) if $\psi \in F_{\mathcal{L}_P}$ then $\neg \psi \in F_{\mathcal{L}_P}$,
 - (b) if $\psi, \phi \in F_{\mathcal{L}_P}$ then $\psi \wedge \phi \in F_{\mathcal{L}_P}$.
- iv. We define the models of \mathcal{L}_P as follows.

For every non-empty set W and every function $\mu : P \longrightarrow \mathcal{P}(W)$ the pair $\langle W, \mu \rangle$ is a model of \mathcal{L}_P . (Indeed μ associates, to every atomic formula, a unique subset of W).

v. To define the meaning functions we first define a relation \Vdash_{μ} from W to P as follows.

For all $w \in W$, we have

- (a) if $\varphi \in P$ then $w \Vdash_{\mu} \varphi$ iff $w \in \mu(\varphi)$,
- (b) if $\varphi = \neg \phi$ then then $w \Vdash_{\mu} \varphi$ iff $w \not\Vdash_{\mu} \mu(\phi)$,
- (c) if $\varphi = \phi_1 \wedge \phi_2$ then $w \Vdash_{\mu} \varphi$ iff $w \Vdash_{\mu} \varphi_1$ and $w \Vdash_{\mu} \varphi_2$.
- (d) Then we define $mng_{\mathcal{L}_P}^{\langle W,\mu\rangle}: F_{\mathcal{L}_P} \longrightarrow \mathcal{P}(W)$ by

$$mng_{\mathcal{L}_P}^{\langle W,\mu\rangle}(\varphi) = \{ w \in W : w \Vdash_{\mu} \varphi \}.$$

vi. Finally, we define

$$\langle W, \mu \rangle \models_{\mathcal{L}_P} \varphi$$
 iff for all $w \in W, w \Vdash_{\mu} \varphi$.

Algebras

(These are non-technical descriptions) We can think of $F_{\mathcal{L}_P}$ as free algebra over the signature $C_n(\mathcal{L})$. A logic \mathcal{L} is called structural if

- i. $mng_{\mathcal{L}}^{\mathfrak{m}}$ are homomorphisms from $F_{\mathcal{L}_{P}}$ to some algebra,
- ii. all homomorphic images of $F_{\mathcal{L}_P}$ are models of \mathcal{L} .

Example Propositional logic (discussed above) is structural, with the class of Boolean Algebras as its associated class of algebras.

Implicit and explicit definitions

(These are a non-technical descriptions). We can imagine $x^2 - 2 = 0$ and $\sqrt{2}$; as implicit and explicit definitions, respectively, of the same real number. Every explicit definition is considered implicit. A logic \mathcal{L} is said to have the Beth property if every relation (intuitively, concept) that is implicitly definable in \mathcal{L} is explicitly definable.

BP vs ES

(*This is a non-technical description*) A structured logic has Beth property if and only if epimorphisms are surjective in its corresponding class of algebras.

Aims and scope

Writing an exposition based upon a thorough understanding of the above material. This study will also aim to explore, at the basic level, any links of ordered algebras with logic.

References

- Eva Hoogland; Algebraic characterizations of various Beth definability properties. Studia Logica 65, 91–112 (2000)
- István Németi. Beth definability is equivalent with surjectiveness of epis in general algebraic logic. Technical report, Math. Inst. Hungar. Acad. Sci., Budapest, (1984)
- W. J. Blok and Don Pigozzi. Algebraizable Logics. Memoirs of the AMS, No 396