Optimal recovery of functionals and operators with relation to approximate solution of PDE’s

Dmytro Skorokhodov

Dnepropetrovsk National University, Ukraine

Tartu, Estonia
September 12, 2013
In this talk we will speak about:

1. Dnepropetrovsk National University;
2. Operators recovery problem;
3. Optimal recovery of solution to PDEs.
In what follows we would consider linear normed spaces:

1. $C(\Omega)$ - space of continuous on Ω functions:
 \[
 \|x\|_{C(\Omega)} = \max\{|x(t)| : t \in \Omega\};
 \]

2. $L_\infty(\Omega)$ - space of essentially bounded on Ω functions:
 \[
 \|x\|_{L_\infty(\Omega)} = \text{esssup}\{|x(t)| : t \in \Omega\};
 \]

3. $L_p(\Omega), 1 \leq p < \infty$, - space of p-integrable on Ω functions:
 \[
 \|x\|_{L_p(\Omega)} = \left(\int_{\Omega} |x(t)|^p \, dt \right)^{1/p}.
 \]
Operators on linear spaces

Let X and Y be linear normed spaces on \mathbb{R}. Consider linear operator $A : X \to Y$.

Examples of functionals:

1. Integration
 $Ax = \int_{\Omega} x(t) \, dt$;

2. Integration with weight
 $Ax = \int_{\Omega} w(t)x(t) \, dt$;

3. Differentiation at fixed point
 $Ax = x'(t_0)$.
Examples of operators:

1. Differentiation

\[Ax = x'; \]

2. Convolution

\[Ax(t) = \int_\Omega K(t, u)x(u)\, du, \quad t \in \Omega; \]

3. Solution of ODE or PDE, e.g. consider Dirichlet’s problem for Laplace’s equation

\[
\begin{cases}
\Delta u = 0, & \text{on } \Omega, \\
u = \varphi, & \text{on } \partial \Omega.
\end{cases}
\]

For \(\varphi \in C(\partial \Omega) \), it has a unique solution \(u \in C^2(\Omega) \cap C(\overline{\Omega}) \) that can be considered as the linear operator \(A : \varphi \rightarrow u \).
There are many good and important operators.
How to compute them?
How to compute them in the best possible way?
Why such questions are important?

1. **computational reason**: integration and differentiation are the limits, but how one could compute them with limited number of operations?

2. **definition reason**: if output of operator is a function when we need to present this function in terms of "simple" functions?

3. **practical reason**: during experiment we can perform only finite number of measurements of process under study.
Let X and Y be linear normed spaces and let $A : X \rightarrow Y$ be linear operator.

1. Compute Ax for every $x \in X$ (or in some meaningful subset of X);

2. We know some finite information $I(x)$ about function x. Information is an operator $I : X \rightarrow \mathbb{R}^N$, $N \in \mathbb{N}$, presented in the form $I(x) = (\varphi_1(x), \varphi_2(x), \ldots, \varphi_N(x))$ where $\varphi_k : X \rightarrow \mathbb{R}$ are the linear functionals;

3. Find generic formula, i.e. operator (method of recovery) $\Phi : \mathbb{R}^N \rightarrow Y$ that would compute Ax for every $x \in X$ (or in some meaningful subset of X).
Examples

Quadrature (cubature) formulas

$$
\int_{\Omega} x(t) \, dt \approx \frac{|\Omega|}{N} x(t_1) + \frac{|\Omega|}{N} x(t_2) + \ldots + \frac{|\Omega|}{N} x(t_N),
$$

where $|\Omega|$ stands for the volume of Ω and points t_1, t_2, \ldots, t_N are fixed.

More generally,

$$
\int_{\Omega} w(t) x(t) \, dt \approx \alpha_1 x(t_1) + \alpha_2 x(t_2) + \ldots + \alpha_N x(t_N),
$$

where points t_1, t_2, \ldots, t_N and coefficients $\alpha_1, \alpha_2, \ldots, \alpha_N$ are fixed.

Finite differences:

$$
x'(t_0) \approx \frac{x(t_0 + h_0) - x(t_0 - h_0)}{2h_0},
$$

where number h_0 is fixed.
Naturally, the question of the best recovery of operator A is interesting. But what should we understood by "optimal"?

\[
\inf_{\Phi} \sup_{x \in X} \|Ax - \Phi(I(x))\|_Y = \infty, \]

if $\Phi(I) \not\equiv A$.

Reduce set in sup as follows. Consider bounded subset $\mathcal{M} \subset X$ and define

\[
E(A, \mathcal{M}, I) = \inf_{\Phi} \sup_{x \in \mathcal{M}} \|Ax - \Phi(I(x))\|_Y.
\]

Error of optimal recovery of operator A on class \mathcal{M} given information I.
Example: upper bound

Consider $X = L_\infty([0, 1])$,

$$Ax = \int_0^1 x(t) \, dt, \quad I(x) = x(t_0).$$

Also for $K > 0$, let

$$M = H^1_K := \{ x \in L_\infty([0, 1]) : |x'(t)| \leq K \} .$$

Then,

$$E(A, H^1_K, I) \leq \sup_{x \in H^1_K} \left| \int_0^1 x(t) \, dt - x(t_0) \right| = \sup_{x \in H^1_K} \left| \int_0^1 [x(t) - x(t_0)] \, dt \right|$$

$$\leq \sup_{x \in H^1_K} \int_0^1 |x(t) - x(t_0)| \, dt = \sup_{x \in H^1_K} \int_0^1 \left| \int_{t_0}^t x'(u) \, du \right| \, dt$$

$$\leq K \int_0^1 |t - t_0| \, dt = K \left[\frac{t_0^2 + (1 - t_0)^2}{2} \right].$$
Let X be a Banach space and X^* be its dual.

Theorem

Let $A, \varphi_1, \ldots, \varphi_N \in X^*$ be given. Then

$$\inf_{\lambda_1, \ldots, \lambda_N} \left\| A - \sum_{k=1}^{N} \lambda_k \varphi_k \right\|_{X^*} = \sup_{\|x\|_X \leq 1} \left\{ A(x) : \varphi_1(x) = 0, \ldots, \varphi_N(x) = 0 \right\}.$$
Proof of Nikolskii duality theorem

Would be presented on the blackboard.
Let X be a Banach space and X^* be its dual.

Theorem

Let $A, \varphi_1, \ldots, \varphi_N \in X^*$ be given. Then

$$
\inf_{\lambda_1, \ldots, \lambda_N} \sup_{\|x\|_X \leq 1} \left| A(x) - \sum_{k=1}^{N} \lambda_k \varphi_k(x) \right| = \sup_{\|x\|_X \leq 1} A(x),
$$

where $\varphi_1(x) = \ldots = \varphi_N(x) = 0$.

- **Milestone in Approximation Theory**
- **Powerful tool to solve various Extremal problems**

S.M. Nikolskii (1950): Optimal quadrature formulas
Let $\mathcal{M} \subset X$ be centrally symmetric convex body. Similarly it is easy to prove

Theorem

Let $A, \varphi_1, \ldots, \varphi_N \in X^*$ be given. Then

$$\inf_{\lambda_1, \ldots, \lambda_N} \sup_{x \in \mathcal{M}} \left| A(x) - \sum_{k=1}^{N} \lambda_k \varphi_k(x) \right| = \sup_{x \in \mathcal{M}} A(x) \quad \varphi_1(x) = \ldots = \varphi_N(x) = 0$$

This is the duality theorem for optimal recovery of bounded functional A on the class \mathcal{M} with the help of linear methods that use information about $x \in \mathcal{M}$ given by functionals $\varphi_1, \ldots, \varphi_N$.
If $\Phi : \mathbb{R}^N \to \mathbb{R}$ is an arbitrary method of recovery of functional f, then

$$\sup_{x \in \mathcal{M}} |A(x) - \Phi(I(x))| \geq \sup_{\varphi_1(x) = 0, \ldots, \varphi_N(x) = 0} |A(x) - \Phi(0, \ldots, 0)|$$

$$\geq \sup_{\varphi_1(x) = 0, \ldots, \varphi_N(x) = 0} \max \{|A(x) - \Phi(0, \ldots, 0)|, |A(x) + \Phi(0, \ldots, 0)|\}$$

$$\geq \sup_{x \in \mathcal{M}} |A(x)|.$$

In view of previous theorem, from this estimation, we obtain that among all optimal methods of recovery there exists a linear method.
For linear operator $A : X \to Y$ and symmetric convex body $\mathcal{M} \subset X$ we can follow Smolyak’s idea to prove

$$E(A, \mathcal{M}, I) \geq \sup_{x \in \mathcal{M} : I(x) = 0} \|Ax\|_Y.$$

Example:

$$E \left(\int_0^1 x(t) \, dt, H^1_K, x(t_0) \right) \geq \sup_{x \in H^1_K : x(t_0) = 0} \left| \int_0^1 x(t) \, dt \right|$$

$$\geq \int_0^1 |t - t_0| \, dt = K \frac{t_0^2 + (1 - t_0)^2}{2}.$$

Compare with the upper estimate

$$E \left(\int_0^1 x(t) \, dt, H^1_K, x(t_0) \right) \leq K \frac{t_0^2 + (1 - t_0)^2}{2}.$$
Return to one-point quadrature on H^1_K

\[
E \left(\int_0^1 x(t) \, dt, H^1_K, x(t_0) \right) = \frac{K \left[t_0^2 + (1 - t_0)^2 \right]}{2} \geq \frac{K}{4}
\]

\[
= E \left(\int_0^1 x(t) \, dt, H^1_K, x \left(\frac{1}{2} \right) \right).
\]

So, some information might be better than other information.

Let \mathcal{I} be the type of information (subset of operators from X to \mathbb{R}^N), e.g. values at N points, averages over N small measurement intervals, first N Fourier coefficient, N coefficients of wavelet expansion, etc. Set

\[
E (A, \mathcal{M}, \mathcal{I}) := \inf_{I \in \mathcal{I}} E (A, \mathcal{M}, I).
\]

Error of optimal recovery of operator A on class \mathcal{M} given information of type \mathcal{I}.
Optimal quadrature formula on H^1_K

If I_N is values of function $x \in X$ at N points then

$$E \left(\int_0^1 x(t) \, dt, H^1_K, I_1 \right) = \frac{K}{4}.$$

In general case

$$E \left(\int_0^1 x(t) \, dt, H^1_K, I_N \right) = \frac{K}{4N^2},$$

optimal information is

$$I(x) = \left(x\left(\frac{1}{2N}\right), x\left(\frac{3}{2N}\right), \ldots, x\left(\frac{2N-1}{2N}\right) \right),$$

optimal method of recovery (optimal quadrature formula) is

$$\Phi(I(x)) = \frac{1}{N} \left[x\left(\frac{1}{2N}\right) + x\left(\frac{3}{2N}\right) + \ldots + x\left(\frac{2N-1}{2N}\right) \right].$$
Let $X = H$ be the Hilbert space, $A : H \rightarrow H$ be the bounded linear operator and B_H be the unit ball in H. Let also $\varphi_1, \varphi_2, \ldots, \varphi_N \in H$ and A^* be the conjugated operator to A, i.e. $\langle Ax, y \rangle = \langle x, A^*y \rangle$.

Theorem

If $I = (A^*\varphi_1, A^*\varphi_2, \ldots, A^*\varphi_N)$ then

$$E(A, B_H, I) = \sup_{x \in B_H} \parallel Ax \parallel_H.$$

Proof would be presented on the blackboard.
Results would be presented on the blackboard.