On the osculator Lorentz spheres of timelike parallel p_i-equidistant ruled surfaces in the Minkowski 3-space R^3_1

NURI KURUOĞLU and MELEK MASAL

Abstract. In this paper, we present radii and curvature axes of osculator Lorentz spheres of the timelike parallel p_i-equidistant ruled surfaces with a timelike base curve in the Minkowski 3-space R^3_1 and give the arc lengths of indicatrix curves of timelike base curves of these surfaces.

1. Introduction

I. E. Valeontis [3] defined parallel p-equidistant ruled surfaces in E^3 and gave some results related to the striction curves of these surfaces.

M. Masal and N. Kuruoğlu [2] studied arc lengths, curvature radii, curvature axes, spherical involute and areas of real closed spherical indicatrix curves of base curves of parallel p-equidistant ruled surfaces in E^3. And also, M. Masal and N. Kuruoğlu [1] defined timelike parallel p_i-equidistant ruled surfaces with a timelike base curve in the Minkowski 3-space and have studied dralls, the shape operators, Gaussian curvatures, mean curvatures, shape tensor, q^{th} fundamental forms of these surfaces.

This paper is organized as follows. In Section 3 we have found radii and curvature axes of osculator Lorentz spheres of the timelike parallel p_i-equidistant ruled surfaces with a timelike base curve in the Minkowski 3-space. And later in Section 4 we have given arc lengths of indicatrix curves of these surfaces.

2. Preliminaries

Let $\alpha : I \rightarrow R^3_1$, $\alpha(t) = (\alpha_1(t), \alpha_2(t), \alpha_3(t))$ be a differentiable unit speed timelike curve in the Minkowski 3-space, where I is an open interval.

Received May 29, 2008.

2000 Mathematics Subject Classification. 53C50.

Key words and phrases. Minkowski space, timelike parallel p_i-equidistant ruled surfaces, osculator, arc lengths.
in \mathbb{R} containing the origin. Let V_1 be the tangent vector field of α, D be the Levi-Civita connection on R^3, and $D_{V_1}V_1$ be a spacelike vector. If V_1 moves along α, then a timelike ruled surface M which is given by the parametrization

$$\varphi(t, v) = \alpha(t) + vV_1(t)$$

is obtained. Let $\{V_1, V_2, V_3\}$ be an orthonormal frame field along α in R^3, where V_2 and V_3 are spacelike vectors. If k_1 and k_2 are the natural curvature and torsion of $\alpha(t)$, respectively, then for α the Frenet formulas are given by (see [4])

$$V_1' = k_1V_2, \quad V_2' = k_1V_1 - k_2V_3, \quad V_3' = k_2V_2.$$ (2.1)

Using $V_1 = \alpha'$ and $V_2 = \frac{\alpha''}{\|\alpha''\|}$, we have $k_1 = \|\alpha''\| > 0$, where $\|\alpha''\|$ means derivative with respect to time t (see [1]).

Definition 2.1 ([1]). The planes corresponding to subspaces $Sp\{V_1, V_2\}$, $Sp\{V_2, V_3\}$ and $Sp\{V_3, V_1\}$ along striction curves of timelike ruled surface M are called **asymptotic plane, polar plane and central plane**, respectively.

Let us suppose that $\alpha^* = \alpha^*(t^*)$ is another differentiable timelike curve with arc-length and $\{V_1^*, V_2^*, V_3^*\}$ is the Frenet frame of this curve in three dimensional Minkowski space R^3. Hence, we define timelike ruled surface M^* parametrically as follows:

$$\varphi^*(t^*, v^*) = \alpha^*(t^*) + v^*V_1^*(t^*), \quad (t^*, v^*) \in I \times \mathbb{R}.$$

Definition 2.2 ([1]). Let M and M^* be two timelike ruled surfaces and let p_1, p_2 and p_3 be the distances between the polar planes, central planes and asymptotic planes, respectively. If the directions of M and M^* are parallel and the distances p_i, $1 \leq i \leq 3$, of M and M^* are constant, then the pair of ruled surfaces M and M^* is called **timelike parallel** p_i-equidistant ruled surfaces with a timelike base curve. If specifically $p_i = 0$, then this pair of ruled surfaces is named as **timelike parallel** p_i-equivalent ruled surfaces with a timelike base curve, where the base curves of ruled surfaces M and M^* are of class C^2.

Therefore the pair of timelike parallel p_i-equidistant ruled surfaces are defined parametrically as

$$M : \varphi(t, v) = \alpha(t) + vV_1(t), \quad (t, v) \in I \times \mathbb{R},$$

$$M^* : \varphi^*(t^*, v^*) = \alpha^*(t^*) + v^*V_1^*(t^*), \quad (t^*, v^*) \in I \times \mathbb{R},$$

where t and t^* are the arc parameters of curves α and α^*, respectively. Let the striction curve of M be the base curve of M and let α^* be a base curve.
of M^*. In this case we can write
\[\alpha^* = \alpha + p_1 V_1 + p_2 V_2 + p_3 V_3, \]
where $p_1(t)$, $p_2(t)$ and $p_3(t)$ are of class C^2 (see [1]).

Theorem 2.1 (see [1], Theorem 3.2 and Corollary 3.1). Let M and M^* be timelike parallel p_i-equidistant ruled surfaces.

i) The Frenet vectors of timelike parallel p_i-equidistant ruled surfaces M and M^* at $\alpha(t)$ and $\alpha^*(t^*)$ points are equivalent for $\frac{dt^*}{dt} > 0$.

ii) There is a relation between the natural curvatures $k_1(t)$ and $k_1^*(t^*)$ of base curves and the torsions $k_2(t)$ and $k_2^*(t^*)$ of M and M^* as follows:
\[k_i^* = k_i \frac{dt^*}{dt}, \quad 1 \leq i \leq 2. \]

3. On the osculator Lorentz spheres of timelike parallel p_i-equidistant ruled surfaces with a timelike base curve

In this section, we will investigate radii and curvature axes of osculator Lorentz spheres of timelike parallel p_i-equidistant ruled surfaces M and M^* with a timelike base curve.

We compute the locus of center of the osculator sphere S^2_1 which is the fourth order contact with the base curve α of M. Let us consider the function f defined by
\[f : I \to \mathbb{R} \]
\[t \to f(t) = \langle \alpha(t) - a, \alpha(t) - a \rangle - R^2, \]
where a and R are the center and radius of S^2_1, respectively. Since S^2_1 is the fourth order contact with the curve α, we can write
\[f(t) = f'(t) = f''(t) = f'''(t) = 0. \]

From $f(t) = 0$ we have
\[\langle \alpha(t) - a, \alpha(t) - a \rangle = R^2, \quad (3.1) \]
from $f'(t) = 0$ and $V_1(t) = \alpha'(t)$ we get
\[\langle V_1(t), \alpha(t) - a \rangle = 0, \quad (3.2) \]
from $f''(t) = 0$ and equation (2.1) we have
\[\langle V_2(t), \alpha(t) - a \rangle = \frac{1}{k_1(t)}, \quad (3.3) \]
Furthermore, for the vector $\alpha(t) - a$, we can write
\[\alpha(t) - a = m_1(t)V_1(t) + m_2(t)V_2(t) + m_3(t)V_3(t), \quad m_i(t) \in \mathbb{R}, \quad (3.4) \]
where \(\{V_1, V_2, V_3\} \) is the orthonormal frame field of \(M \). From here we have

\[
\langle \alpha(t) - a, V_1(t) \rangle = -m_1(t), \quad \langle \alpha(t) - a, V_2(t) \rangle = m_2(t), \quad \langle \alpha(t) - a, V_3(t) \rangle = m_3(t).
\]

(3.5)

From equations (3.2) and (3.3) we get

\[
m_1(t) = 0, \quad m_2(t) = \frac{1}{k_1(t)}.
\]

(3.6)

From equations (3.1), (3.4) and (3.6) we obtain

\[
R = \sqrt{m_2^2 + m_3^2}
\]

(3.7)

or

\[
m_3 = \pm \sqrt{R^2 - m_2^2}.
\]

(3.8)

Using (3.4), for the center \(a \) of \(S_1^2 \), we can write

\[
a = \alpha(t) - \frac{1}{k_1} V_2 - \lambda V_3, \quad \lambda = m_3(t) \in \mathbb{R}.
\]

From \(f''''(t) = 0 \) we have

\[
k_1' \langle V_2(t), \alpha(t) - a \rangle + k_1 \langle V_2'(t), \alpha(t) - a \rangle + k_1 \langle V_2(t), V_1(t) \rangle = 0.
\]

So, from (2.1), (3.5) and (3.6) we obtain

\[
m_3 = \frac{-k_1'}{k_1^2 k_2} = \frac{m_2'}{k_2}.
\]

(3.9)

Similarly, we compute the locus of center of osculator sphere \(S_1^{*2} \) which is the fourth order contact with the timelike base curve \(\alpha^* \) of \(M^* \). Let us consider the function \(f^* \) defined as

\[
f^* : I \rightarrow \mathbb{R}
\]

\[
t^* \rightarrow f^* (t^*) = \langle \alpha^*(t^*) - a^*, \alpha^*(t^*) - a^* \rangle - R^*^2,
\]

where \(a^* \) and \(R^* \) are the center and the radius of \(S_1^{*2} \). In addition, for the vector \(\alpha^*(t^*) - a^* \), we can write

\[
\alpha^*(t^*) - a^* = m_1(t^*) V_1(t^*) + m_2(t^*) V_2(t^*) + m_3(t^*) V_3(t^*), \quad m_i(t^*) \in \mathbb{R},
\]

where \(\{V_1^*, V_2^*, V_3^*\} \) is the orthonormal frame field of \(M^* \).

In a similar way \(m_1^*(t^*), m_2^*(t^*), m_3^*(t^*), R^* \) and \(a^* \) of \(S_1^{*2} \) are found to be

\[
m_1^*(t^*) = 0, \quad m_2^*(t^*) = \frac{1}{k_1'(t^*)}, \quad m_3^*(t^*) = \frac{m_2'}{k_2'(t^*)}, \quad R^* = \sqrt{m_2'^2 + m_3'^2}
\]

(3.10)

and

\[
a^* = \alpha^*(t^*) - \frac{1}{k_1} V_2^* - \lambda^* V_3^*, \quad \lambda^* = m_3^*(t^*) \in \mathbb{R}.
\]
Now, we can compute the relations between the radii of osculator Lorentz spheres and curvature axes of the base curves of M and M^*. From Theorem 2.1 ii), equations (3.6) and (3.10), we have

$$m_1^*(t^*) = m_1(t) = 0, \quad m_2^*(t^*) = \frac{dt^*}{dt} m_2(t). \quad (3.11)$$

If $\frac{dt}{dt^*}$ is constant, then from Theorem 2.1 ii) we obtain

$$k_1^{*'} = k_1' \left(\frac{dt}{dt^*} \right)^2. \quad (3.12)$$

Hence, using (3.10), (3.12), (3.9) and Theorem 2.1 ii), we find

$$m_3^* = \frac{dt^*}{dt} m_3. \quad (3.13)$$

Combining (3.11), (3.13) and Theorem 2.1 i), we get

$$\alpha^* - a^* = \frac{dt^*}{dt} (\alpha - a).$$

Similarly, combining (3.7), (3.8), (3.11) and (3.13), we have

$$R^{*2} = \left(\frac{dt^*}{dt} \right)^2 R^2$$

or

$$R^* = \left| \frac{dt^*}{dt} \right| R.$$

So, we have proved the following theorem.

Theorem 3.1. Let M and M^* be the timelike parallel p_t-equidistant ruled surfaces with a timelike base curve.

i) If q_α and q_{α^*} are the curvature axes (the locus of center of osculator Lorentz spheres) of the base curves α and α^* of M and M^*, then we have

$$q_{\alpha^*} - \alpha^* = \frac{dt^*}{dt} (q_\alpha - \alpha).$$

ii) If R and R^* are the radiuses of osculator Lorentz spheres of base curves α and α^* of M and M^*, then we have

$$R^* = \left| \frac{dt^*}{dt} \right| R.$$
4. Arc lengths of indicatrix curves of the timelike parallel p_i-equidistant ruled surfaces with a timelike base curve

In this section, we will investigate arc lengths of indicatrix curves of timelike base curves of the timelike parallel p_i-equidistant ruled surfaces M and M^* with timelike base curve.

Since V_2 and V_3 are spacelike vectors, the curves (V_2) and (V_3) generated by the spacelike vectors V_2 and V_3 on the pseudosphere S^2_1 are called the pseudo-spherical indicatrix curves. The curve (V_1) generated by the vector V_1 on the pseudohyperbolic space H^2_1 is called indicatrix curve. Let S_{V_i} and $S_{V^*_i}$ denote the arc lengths of indicatrix curves (V_i) and (V^*_i) generated by the vector fields V_i and V^*_i, respectively. So we can write

$$S_{V_i} = \int \| V'_i \| \, dt$$

and

$$S_{V^*_i} = \int \| V'^*_i \| \, dt^*, \quad 1 \leq i \leq 3.$$

Using the Frenet formulas and Theorem 2.1 ii), we get

$$S_{V^*_i} = \int k_1 \, dt = S_{V_i}, \quad S_{V^*_2} = \int \sqrt{|k^2_2 - k^2_1|} \, dt = S_{V_2}, \quad S_{V^*_3} = \int |k_2| \, dt = S_{V_3}.$$

where $\frac{dt}{dt^*} > 0$.

Similarly, for the arc lengths S_{α} and S_{α^*} of the indicatrix curves (α) and (α^*) generated by the timelike curves α and α^* on the pseudosphere S^2_1, respectively, we can write

$$S_{\alpha} = \int \| \alpha' \| \, dt = \int \, dt$$

and

$$S_{\alpha^*} = \int \| \alpha'^* \| \, dt^* = \int \, dt^*.$$

If $\frac{k_1}{k^*_1}$ is constant, then using Theorem 2.1 ii), we obtain

$$S_{\alpha^*} = \frac{k_1}{k^*_1} S_{\alpha}.$$

Thus we have proved the following theorems.

Theorem 4.1. If S_{V_i} and $S_{V^*_i}$, $1 \leq i \leq 3$, are the arc lengths of indicatrix curves of Frenet vectors V_i and V^*_i of timelike base curves α and α^* of the timelike parallel p_i-equidistant ruled surfaces M and M^*, respectively, then we have

$$S_{V^*_i} = S_{V_i}, \quad 1 \leq i \leq 3.$$

Theorem 4.2. Let S_{α} and S_{α^*} be the arc lengths of indicatrix curves of timelike base curves α and α^* of the timelike parallel p_i-equidistant ruled
surfaces M and M^*, respectively. If \(\frac{k_1}{k_1^*} \) is constant, then we have \(S_{\alpha^*} = \frac{k_1}{k_1^*} S_\alpha \).

Acknowledgement. The authors thank the referee for the helpful suggestions and comments.

References

University of Bahçeşehir, Faculty of Arts and Science, Department of Mathematics and Computer Sciences, Bahçeşehir 34538, Istanbul, Turkey
E-mail address: kuruoglu@bahcesehir.edu.tr

Sakarya University, Faculty of Education, Department of Elementary Education, Hendek 54300, Sakarya, Turkey
E-mail address: mmasal@sakarya.edu.tr